
1 WIND RIVER SECURE DEVELOPMENT LIFECYCLE (SDL) STANDARDS MAP

Practices Tasks Notional Implementation Examples BSIMM SAMM EO14028 IEC62443 ISO27034 ASVS NISTCSF SP800-53 SP800-160 SP800-161 SP800-181 SP800-216

Define Security Require-
ments for Software
Development (PO.1):
Ensure that security re-
quirements for software
development are known
at all times so that they
can be taken into ac-
count throughout the
SDLC and duplication of
effort can be minimized
because the require-
ments information can
be collected once and
shared. This includes
requirements from
internal sources (e.g., the
organization’s policies,
business objectives, and
risk management strate-
gy) and external sources
(e.g., applicable laws
and regulations).

PO.1.1: Identify and document all securi-
ty requirements for the organization’s
software development infrastructures
and processes, and maintain the require-
ments over time.

Example 1: Define policies for securing software development infrastructures and their
components, including development endpoints, throughout the SDLC and maintaining
that security.
Example 2: Define policies for securing software development processes throughout the SDLC
and maintaining that security, including for open source and other third-party software
components utilized by software being developed.
Example 3: Review and update security requirements at least annually, or sooner if there are
new requirements from internal or external sources, or a major security incident targeting
software development infrastructure has occurred.
Example 4: Educate affected individuals on impending changes to requirements.

CP1.1
CP1.3
SR1.1
SR2.2
SE1.2
SE2.6

PC1-A
PC1-B
PC2-A

4e(ix) SM-7
SM-9

1.1.1 ID.GV-3 SA-1
SA-8
SA-15
SR-3

3.1.2
3.2.1
3.2.2
3.3.1
3.4.2
3.4.3

SA-1
SA-8
SA-15
SR-3

T0414, K0003,
K0039, K0044,
K0157, K0168,
K0177, K0211,
K0260, K0261,
K0262, K0524,
S0010, S0357,
S0368, A0033,
A0123, A0151

PO.1.2: Identify and document all secu-
rity requirements for organization-devel-
oped software to meet, and maintain the
requirements over time.

Example 1: Define policies that specify risk-based software architecture and design
requirements, such as making code modular to facilitate code reuse and updates; isolating
security components from other components during execution; avoiding undocumented
commands and settings; and providing features that will aid software acquirers with the secure
deployment, operation, and maintenance of the software.
Example 2: Define policies that specify the security requirements for the organization’s software,
and verify compliance at key points in the SDLC (e.g., classes of software flaws verified by gates,
responses to vulnerabilities discovered in released software)
Example 3: Analyze the risk of applicable technology stacks (e.g., languages, environments,
deployment models), and recommend or require the use of stacks that will reduce risk
compared to others.
Example 4: Define policies that specify what needs to be archived for each software release
(e.g., code, package files, third-party libraries, documentation, data inventory) and how long it
needs to be retained based on the SDLC model, software end-of-life, and other factors.
Example 5: Ensure that policies cover the entire software lifecycle, including notifying users of
the impending end of software support and the date of software end-of-life
Example 6: Review all security requirements at least annually, or sooner if there are new
requirements from internal or external sources, a major vulnerability is discovered in released
software, or a major security incident targeting organization-developed software has occurred.
Example 7: Establish and follow processes for handling requirement exception requests,
including periodic reviews of all approved exceptions.

SM1.1
SM1.4
SM2.2
CP1.1
CP1.2
CP1.3
CP2.1
CP2.3
AM1.2
SFD1.1
SFD2.1
SFD3.2
SR1.1
SR1.3
SR2.2
SR3.3
SR3.4

PC1-A
PC1-B
PC2-A
PC3-A
SR1-A
SR1-B
SR2-B
SA1-B
IR1-A
(IR1-A
should
be IR1-B
Identify roles
and respon-
sibilities
for incident
response.)

4e(ix) SR-3
SR-4
SR-5
SD-4

7.3.2 1.12 SA-8
SA-8(3)
SA-15
SR-3

3.1.2
3.2.1
3.3.1

SA-8
SA-15
SR-3

T0414
K0003
K0039
K0044
K0157
K0168
K0177
K0211
K0260
K0261
K0262
K0524
S0010
S0357
S0368
A0033
A0123
A0151

PO.1.3: Communicate requirements to
all third parties who will provide com-
mercial software components to the
organization for reuse by the organiza-
tion’s own software. [Formerly PW.3.1]

Example 1: Define a core set of security requirements for software components, and include it in
acquisition documents, software contracts, and other agreements with third parties.
Example 2: Define security-related criteria for selecting software; the criteria can include the third
party’s vulnerability disclosure program and product security incident response capabilities or the
third party’s adherence to organization-defined practices.
Example 3: Require third parties to attest that their software complies with the organization’s
security requirements.
Example 4: Require third parties to provide provenance data and integrity verification mechanisms
for all components of their software.
Example 5: Establish and follow processes to address risk when there are security requirements
that third-party software components to be acquired do not meet; this should include periodic
reviews of all approved exceptions to requirements.

CP2.4
CP3.2
SR2.5
SR3.2

SR3-A 4e(vi)
4e(ix)

SM-9
SM-10

SA-4
SA-9
SA-10
SA-10(1)
SA-15
SR-3
SR-4
SR-5

3.1.1
3.1.2

SA-4
SA-9
SA-9(1)
SA-9(3)
SA-10
SA-10(1)
SA-15
SR-3
SR-4
SR-5

T0203
T0415
K0039
S0374
A0056
A0161

2 WIND RIVER SECURE DEVELOPMENT LIFECYCLE (SDL) STANDARDS MAP

Practices Tasks Notional Implementation Examples BSIMM SAMM EO14028 IEC62443 ISO27034 ASVS NISTCSF SP800-53 SP800-160 SP800-161 SP800-181 SP800-216

Implement Roles and
Responsibilities (PO.2):
Ensure that everyone
inside and outside of the
organization involved in
the SDLC is prepared to
perform their SDLC-re-
lated roles and respon-
sibilities throughout the
SDLC.

PO.2.1: Create new roles and alter re-
sponsibilities for existing roles as needed
to encompass all parts of the SDLC. Peri-
odically review and maintain the defined
roles and responsibilities, updating them
as needed.

Example 1: Define SDLC-related roles and responsibilities for all members of the software
development team.
Example 2: Integrate the security roles into the software development team.
Example 3: Define roles and responsibilities for cybersecurity staff, security champions, project
managers and leads, senior management, software developers, software testers, software
assurance leads and staff, product owners, operations and platform engineers, and others
involved in the SDLC.
Example 4: Conduct an annual review of all roles and responsibilities.
Example 5: Educate affected individuals on impending changes to roles and responsibilities, and
confirm that the individuals understand the changes and agree to follow them.
Example 6: Implement and use tools and processes to promote communication and
engagement among individuals with SDLC-related roles and responsibilities, such as creating
messaging channels for team discussions.
Example 7: Designate a group of individuals or a team as the code owner for each project.

PD.2-1
PD.2-2

SM1.1
SM2.3
SM2.7
CR1.7

4e(ix) SM-2
SM-13

SA-3 3.2.1
3.2.4
3.3.1

SA-3

PO.2.2: Provide role-based training
for all personnel with responsibilities
that contribute to secure development.
Periodically review personnel proficiency
and role-based training, and update the
training as needed.

Example 1: Document the desired outcomes of training for each role.
Example 2: Define the type of training or curriculum required to achieve the desired
outcome for each role.
Example 3: Create a training plan for each role.
Example 4: Acquire or create training for each role; acquired training may need to
be customized for the organization.
Example 5: Measure outcome performance to identify areas where changes to training
may be beneficial.

T1.1
T1.7
T1.8
T2.5
T2.8
T2.9
T3.1
T3.2
T3.4

EG1-A
EG2-A

4e(ix) SM-4 SA-8 3.2.4
3.2.6

SA-8 OV-TEA-001
OV-TEA-002
T0030, T0073,
T0320, K0204,
K0208, K0220,
K0226, K0243,
K0245, K0252,
S0100, S0101,
A0004, A0057

PO.2.3: Obtain upper management
or authorizing official commitment to
secure development, and convey that
commitment to all with development-re-
lated roles and responsibilities.

Example 1: Appoint a single leader or leadership team to be responsible for the entire secure
software development process, including being accountable for releasing software to production
and delegating responsibilities as appropriate.
Example 2: Increase authorizing officials’ awareness of the risks of developing software without
integrating security throughout the development lifecycle and the risk mitigation provided by
secure development practices.
Example 3: Assist upper management in incorporating secure development support into their
communications with personnel with development-related roles and responsibilities.
Example 4: Educate all personnel with development-related roles and responsibilities on upper
management’s commitment to secure development and the importance of secure development
to the organization.

SM1.3
SM2.7
CP2.5

SM1.A 4e(ix) PM-1
SA-9
SA-12
PM-9
(added
based on
NISTCSF
controls
ID.RM-1 &
ID.SC-1)

T0001
T0004

3 WIND RIVER SECURE DEVELOPMENT LIFECYCLE (SDL) STANDARDS MAP

Practices Tasks Notional Implementation Examples BSIMM SAMM EO14028 IEC62443 ISO27034 ASVS NISTCSF SP800-53 SP800-160 SP800-161 SP800-181 SP800-216

Implement Supporting
Toolchains (PO.3): Use
automation to reduce
human effort and im-
prove the accuracy,
reproducibility, usability,
and comprehensiveness
of security practices
throughout the SDLC, as
well as provide a way to
document and demon-
strate the use of these
practices. Toolchains
and tools may
be used at different
levels of the organiza-
tion, such as organiza-
tion-wide or project-spe-
cific, and may address a
particular
part of the SDLC, like a
build pipeline.

PO.3.1: Specify which tools or tool types
must or should be included in each tool-
chain to mitigate identified risks, as well
as how the toolchain components are to
be integrated with each other.

Example 1: Define categories of toolchains, and specify the mandatory tools or tool types to be
used for each category.
Example 2: Identify security tools to integrate into the developer toolchain.
Example 3: Define what information is to be passed between tools and what data formats are
to be used.
Example 4: Evaluate tools’ signing capabilities to create immutable records/logs for auditability
within the toolchain.
Example 5: Use automated technology for toolchain management and orchestration.

CR1.4
ST1.4
ST2.5
SE2.7

IR2-B,
ST2-B

4e(iii),
4e(ix)

SA-15 SA-15 K0013
K017

PO.3.2: Follow recommended security
practices to deploy, operate, and main-
tain tools and toolchains.

Example 1: Evaluate, select, and acquire tools, and assess the security of each tool.
Example 2: Integrate tools with other tools and existing software development processes
and workflows.
Example 3: Use code-based configuration for toolchains (e.g., pipelines-as-code, toolchains-
as-code).
Example 4: Implement the technologies and processes needed for reproducible builds.
Example 5: Update, upgrade, or replace tools as needed to address tool vulnerabilities or add
new tool capabilities.
Example 6: Continuously monitor tools and tool logs for potential operational and security
issues, including policy violations and anomalous behavior.
Example 7: Regularly verify the integrity and check the provenance of each tool to identify
potential problems.
Example 8: See PW.6 regarding compiler, interpreter, and build tools.
Example 9: See PO.5 regarding implementing and maintaining secure environments.

SR1.1
SR1.3
SR3.4

4e(i)(F)
4e(ii)
4e(iii)
4e(v)
4e(vi)
4e(ix)

SM-7 1.14.3
1.14.4
14.1
14.2

SA-15 SA-15 K0013
K0178

PO.3.3: Configure tools to generate
artifacts of their support of secure soft-
ware development practices as defined
by the organization.

Example 1: Use existing tooling (e.g., workflow tracking, issue tracking, value stream mapping)
to create an audit trail of the secure development-related actions that are performed for
continuous improvement purposes.
Example 2: Determine how often the collected information should be audited, and implement
the necessary processes.
Example 3: Establish and enforce security and retention policies for artifact data.
Example 4: Assign responsibility for creating any needed artifacts that tools cannot generate.

SM1.4
SM3.4
SR1.3

PC3-B 4e(i)(F)
4e(ii)
4e(v)
4e(ix)

SM-12
SI-2

SA-15 SA-15 K0013
T0024

Define and Use Criteria
for Software Security
Checks (PO.4): Help
ensure that the software
resulting from the SDLC
meets the organization’s
expectations by defining
and using criteria for
checking the software’s
security during develop-
ment.

PO.4.1: Define criteria for software
security checks and track throughout
the SDLC.

Example 1: Ensure that the criteria adequately indicate how effectively security risk is
being managed.
Example 2: Define key performance indicators (KPIs), key risk indicators (KRIs), vulnerability
severity scores, and other measures for software security.
Example 3: Add software security criteria to existing checks (e.g., the Definition of Done in agile
SDLC methodologies).
Example 4: Review the artifacts generated as part of the software development workflow
system to determine if they meet the criteria.
Example 5: Record security check approvals, rejections, and exception requests as part of the
workflow and tracking system.
Example 6: Analyze collected data in the context of the security successes and failures of each
development project, and use the results to improve the SDLC.

SM1.4
SM2.1
SM2.2
SM2.6
SM3.3
CP2.2

PC3-A
DR3-B
IR3-B
ST3-B

4e(iv)
4e(v)
4e(ix)

SI-1
SI-2
SVV-3

7.3.5 SA-15
SA-15(1)

3.2.1
3.2.5
3.3.1

SA-15
SA-15(1)

K0153
K0165

PO.4.2: Implement processes,
mechanisms, etc. to gather and
safeguard the necessary information
in support of the criteria.

Example 1: Use the toolchain to automatically gather information that informs security
decision-making.
Example 2: Deploy additional tools if needed to support the generation and collection of
information supporting the criteria.
Example 3: Automate decision-making processes utilizing the criteria, and periodically review
these processes.
Example 4: Only allow authorized personnel to access the gathered information, and prevent any
alteration or deletion of the information.

SM1.4
SM2.1
SM2.2
SM3.4

PC3-B 4e(iv)
4e(v)
4e(ix)

SI-1
SVV-1
SVV-2
SVV-3
SVV-4

SA-15
SA-15(1)
SA-15(11)

3.2.5
3.3.7

SA-15
SA-15(1)
SA-15(11)

T0349
K0153

4 WIND RIVER SECURE DEVELOPMENT LIFECYCLE (SDL) STANDARDS MAP

Practices Tasks Notional Implementation Examples BSIMM SAMM EO14028 IEC62443 ISO27034 ASVS NISTCSF SP800-53 SP800-160 SP800-161 SP800-181 SP800-216

Implement and Maintain
Secure Environments for
Software Development
(PO.5): Ensure that all
components of the en-
vironments for software
development are strongly
protected from internal
and external threats to
prevent compromises of
the environments or the
software being developed
or maintained
within them. Examples
of environments for
software development
include development,
build, test, and distribu-
tion environments.

PO.5.1: Separate and protect
each environment involved in
software development.

Example 1: Use multi-factor, risk-based authentication and conditional access for
each environment.
Example 2: Use network segmentation and access controls to separate the environments from
each other and from production environments, and to separate components from each other
within each non-production environment, in order to reduce attack surfaces and attackers’
lateral movement and privilege/access escalation.
Example 3: Enforce authentication and tightly restrict connections entering and exiting
each software development environment, including minimizing access to the internet to only
what is necessary.
Example 4: Minimize direct human access to toolchain systems, such as build services.
Continuously monitor and audit all access attempts and all use of privileged access.
Example 5: Minimize the use of production-environment software and services from non-
production environments.
Example 6: Regularly log, monitor, and audit trust relationships for authorization and access
between the environments and between the components within each environment.
Example 7: Continuously log and monitor operations and alerts across all components of
the development environment to detect, respond, and recover from attempted and actual
cyber incidents.
Example 8: Configure security controls and other tools involved in separating and protecting the
environments to generate artifacts for their activities.
Example 9: Continuously monitor all software deployed in each environment for new
vulnerabilities, and respond to vulnerabilities appropriately following a risk-based approach.
Example 10: Configure and implement measures to secure the environments’ hosting
infrastructures following a zero-trust architecture.

4e(i)(A)
4e(i)(B)
4e(i)(C)
4e(i)(D)
4e(i)(F)
4e(ii)
4e(iii)
4e(v)
4e(vi)
4e(ix)

SM-7 SA-3(1)
SA-8
SA-15

SA-3
SA-8
SA-15

OM-NET-001
SP-SYS-001
T0019, T0023,
T0144, T0160,
T0262, T0438,
T0484, T0485,
T0553, K0001,
K0005, K0007,
K0033, K0049,
K0056, K0061,
K0071, K0104,
K0112, K0179,
K0326, K0487,
S0007, S0084,
S0121, A0048

PO.5.2: Secure and harden development
endpoints (i.e., endpoints for software
designers, developers, testers, builders,
etc.) to perform development-related
tasks using a risk-based approach.

Example 1: Configure each development endpoint based on approved hardening guides, checklists,
etc.; for example, enable FIPS-compliant encryption of all sensitive data at rest and in transit.
Example 2: Configure each development endpoint and the development resources to provide the
least functionality needed by users and services and to enforce the principle of least privilege.
Example 3: Continuously monitor the security posture of all development endpoints, including
monitoring and auditing all use of privileged access.
Example 4: Configure security controls and other tools involved in securing and hardening
development endpoints to generate artifacts for their activities.
Example 5: Require multi-factor authentication for all access to development endpoints and
development resources.
Example 6: Provide dedicated development endpoints on non-production networks for
performing all development-related tasks. Provide separate endpoints on production networks
for all other tasks.
Example 7: Configure each development endpoint following a zero-trust architecture.

4e(i)(C)
4e(i)(E)
4e(i)(F)
4e(ii)
4e(iii)
4e(v)
4e(vi)
4e(ix)

SM-7 SA-15 SA-15 OM-ADM-001
 SP-SYS-001
T0484, T0485
T0489, T0553
K0005, K0007,
K0077, K0088,
K0130, K0167,
K0205, K0275,
S0076, S0097,
S0121, S0158,
A0155

5 WIND RIVER SECURE DEVELOPMENT LIFECYCLE (SDL) STANDARDS MAP

Practices Tasks Notional Implementation Examples BSIMM SAMM EO14028 IEC62443 ISO27034 ASVS NISTCSF SP800-53 SP800-160 SP800-161 SP800-181 SP800-216

Protect All Forms of
Code from Unauthorized
Access and Tampering
(PS.1): Help prevent
unauthorized changes
to code, both inadver-
tent and intentional,
which could circumvent
or negate the intended
security characteristics
of the software. For code
that is not intended to be
publicly accessible, this
helps prevent theft of the
software and may make
it more difficult or time-
consuming for attackers
to find vulnerabilities in
the software.

PS.1.1: Store all forms of code – includ-
ing source code, executable code, and
configuration-as-code – based on the
principle of least privilege so that only
authorized personnel, tools, services,
etc. have access.

Example 1: Store all source code and configuration-as-code in a code repository, and restrict
access to it based on the nature of the code. For example, open source code intended for
public access may need its integrity and availability protected; other code may also need its
confidentiality protected.
Example 2: Use version control features of the repository to track all changes made to the code
with accountability to the individual account.
Example 3: Use commit signing for code repositories.
Example 4: Have the code owner review and approve all changes made to the code by others.
Example 5: Use code signing to help protect the integrity of executables.
Example 6: Use cryptography (e.g., cryptographic hashes) to help protect file integrity.

SE2.4 OE3-B 4e(iii)
4e(iv)
4e(ix)

SM-6
SM-7
SM-8

1.10
10.3.2

PR.AC-4
PR.DS-6
PR.IP-3

SA-10 SA-8
SA-10

Provide a Mechanism
for Verifying Software
Release Integrity (PS.2):
Help software acquirers
ensure that the software
they acquire is legitimate
and has not been tam-
pered with.

PS.2.1: Make software integrity verifi-
cation information available to software
acquirers.

Example 1: Post cryptographic hashes for release files on a well-secured website.
Example 2: Use an established certificate authority for code signing so that consumers’
operating systems or other tools and services can confirm the validity of signatures before use.
Example 3: Periodically review the code signing processes, including certificate renewal,
rotation, revocation, and protection.

SM.4
SM.5
SM.6

OE3-B 4e(iii)
4e(ix)
4e(x)

SM-6
SM-8
SUM-4

SA-8 SA-8 K0178

Archive and Protect Each
Software Release (PS.3):
Preserve software releas-
es in order to help identify,
analyze, and eliminate
vulnerabilities discovered
in the software after
release.

PS.3.1: Securely archive the
necessary files and supporting data
(e.g., integrity verification information,
provenance data) to be retained for each
software release.

Example 1: Store the release files, associated images, etc. in repositories following the
organization’s established policy. Allow read-only access to them by necessary personnel and no
access by anyone else.
Example 2: Store and protect release integrity verification information and provenance data,
such as by keeping it in a separate location from the release files or by signing the data.

4e(iii)
4e(vi)
4e(ix)
4e(x)

SM-6
SM-7

SA-10
SA-15
SA-15(11)
SR-4

SA-8
SA-10
SA-15(11)
SR-4

PS.3.2: Collect, safeguard, maintain, and
share provenance data for all compo-
nents of each software release (e.g., in a
software bill of materials [SBOM]).

Example 1: Make the provenance data available to software acquirers in accordance with the
organization’s policies, preferably using standards-based formats.
Example 2:Make the provenance data available to the organization’s operations and response
teams to aid them in mitigating software vulnerabilities.
Example 3: Protect the integrity of provenance data, and provide a way for recipients to verify
provenance data integrity.
Example 4: Update the provenance data every time any of the software’s components are updated.

SE3.6 4e(vi)
4e(vii)
4e(ix)
4e(x)

SA-8
SR-3
SR-4

SA-8
SR-3
SR-4

6 WIND RIVER SECURE DEVELOPMENT LIFECYCLE (SDL) STANDARDS MAP

Practices Tasks Notional Implementation Examples BSIMM SAMM EO14028 IEC62443 ISO27034 ASVS NISTCSF SP800-53 SP800-160 SP800-161 SP800-181 SP800-216

Design Software to Meet
Security Requirements
and Mitigate Security
Risks (PW.1): Identify
and evaluate the security
requirements for the
software; determine
what security risks the
software is likely to
face during operation
and how the software’s
design and architecture
should mitigate those
risks; and justify any
cases where risk-based
analysis indicates that
security requirements
should be relaxed or
waived. Addressing
security requirements
and risks during software
design (secure by
design)is
key for improving
software security and
also helps improve
development efficiency.

PW.1.1: Use forms of risk modeling –
such as threat modeling, attack model-
ing, or attack surface mapping –
to help assess the security risk for
the software.

Example 1: Train the development team (security champions, in particular) or collaborate with
a risk modeling expert to create models and analyze how to use a risk-based approach to
communicate the risks and determine how to address them, including implementing mitigations.
Example 2: Perform more rigorous assessments for high-risk areas, such as protecting sensitive
data and safeguarding identification, authentication, and access control, including credential
management.
Example 3: Review vulnerability reports and statistics for previous software to inform the
security risk assessment.
Example 4: Use data classification methods to identify and characterize each type of data that
the software will interact with.

AM1.2, AM1.3,
AM1.5, AM2.1,
AM2.2, AM2.5,
AM2.6, AM2.7,
SFD2.2,
AA1.1, AA1.2,
AA1.3, AA2.1

TA1-A,
TA1-B,
TA3-B,
DR1-A

4e(ix) SM-4, SR-1,
SR-2, SD-1

7.3.3 1.1.2, 1.2,
1.4, 1.6,
1.8, 1.9,
1.11, 2, 3,
4, 6, 8, 9,
11, 12, 13

ID.RA SA-8
SA-11(2)
SA-11(6)
SA-15(5)

3.3.4
3.4.5

SA-8
SA-11(2)
SA-11(6)
SA-15(5)

T0038, T0062,
K0005, K0009,
K0038, K0039,
K0070, K0080,
K0119, K0147,
K0149, K0151,
K0152, K0160,
K0161, K0162,
K0165, K0297,
K0310, K0344,
K0362, K0487,
K0624, S0006,
S0009, S0022,
S0078, S0171,
S0229, S0248,
A0092, A0093,
A0107

PW.1.2: Track and maintain the soft-
ware’s security requirements, risks, and
design decisions.

Example 1: Record the response to each risk, including how mitigations are to be achieved
and what the rationales are for any approved exceptions to the security requirements. Add any
mitigations to the software’s security requirements.
Example 2: Maintain records of design decisions, risk responses, and approved exceptions that
can be used for auditing and maintenance purposes throughout the rest of the software lifecycle.
Example 3: Periodically reevaluate all approved exceptions to the security requirements, and
implement changes as needed.

SFD3.1,
SFD3.3,
AA2.2, AA3.2

DR1-B 4e(v),
4e(ix)

SD-1 7.3.3 1.1.3,
1.1.4

SA-8, SA-
10, SA-17

SA-8, SA-17 T0256; K0005,
K0038, K0039,
K0147, K0149,
K0160, K0161,
K0162, K0165,
K0344, K0362,
K0487; S0006,
S0009, S0078,
S0171, S0229,
S0248; A0092,
A0107

7 WIND RIVER SECURE DEVELOPMENT LIFECYCLE (SDL) STANDARDS MAP

Practices Tasks Notional Implementation Examples BSIMM SAMM EO14028 IEC62443 ISO27034 ASVS NISTCSF SP800-53 SP800-160 SP800-161 SP800-181 SP800-216

Reuse Existing, Well-Se-
cured Software When
Feasible Instead of
Duplicating Functionality
(PW.4): Lower the costs
of software development,
expedite software devel-
opment, and decrease
the likelihood of intro-
ducing additional secu-
rity vulnerabilities into
the software by reusing
software modules and
services that have al-
ready had their security
posture checked. This is
particularly important for
software that implements
security functionality,
such as cryptographic
modules and protocols.

PW.4.1: Acquire and maintain well-se-
cured software components (e.g., soft-
ware libraries, modules, middleware,
frameworks) from commercial, open-
source, and other third-party developers
for use by the organization’s software.

Example 1: Review and evaluate third-party software components in the context of their
expected use. If a component is to be used in a substantially different way in the future, perform
the review and evaluation again with that new context in mind.
Example 2: Determine secure configurations for software components, and make these
available (e.g., as configuration-as-code) so developers can readily use the configurations.
Example 3: Obtain provenance information (e.g., SBOM, source composition analysis, binary
software composition analysis) for each software component, and analyze that information to
better assess the risk that the component may introduce.
Example 4: Establish one or more software repositories to host sanctioned and vetted open-
source components.
Example 5: Maintain a list of organization-approved commercial software components and
component versions along with their provenance data.
Example 6: Designate which components must be included in software to be developed.
Example 7: Implement processes to update deployed software components to newer versions,
and retain older versions of software components until all transitions from those versions have
been completed successfully.
Example 8: If the integrity or provenance of acquired binaries cannot be confirmed, build binaries
from source code after verifying the source code’s integrity and provenance.

SFD2.1,
SFD3.2,
SR2.4, SR3.1,
SE3.6

SA1-A 4e(iii),
4e(vi),
4e(ix),
4e(x)

SM-9, SM-10 1.1.6 ID.SC-2 SA-4
SA-5
SA-8(3) SA-
10(6) SR-3,
SR-4

SA-4, SA-5,
SA-8(3), SA-
10(6), SR-3,
SR-4

K0039

PW.4.2: Create and maintain well-se-
cured software components in-house
following SDLC processes to meet
common internal software development
needs that cannot be better met by
third-party software components.

Example 1: Follow organization-established security practices for secure software development
when creating and maintaining the components.
Example 2: Determine secure configurations for software components, and make these
available (e.g., as configuration-as-code) so developers can readily use the configurations.
Example 3: Maintain one or more software repositories for these components.
Example 4: Designate which components must be included in software to be developed.
Example 5: Implement processes to update deployed software components to newer versions,
and maintain older versions of software components until all transitions from those versions
have been completed successfully.

SFD1.1,
SFD2.1,
SFD3.2, SR1.1

4e(ix) 1.1.6 SA-8(3) SA-8(3) SP-DEV-001

Reuse Existing, Well-
Secured Software When
Feasible Instead of
Duplicating Functionality
(PW.4):
Lower the costs of
software development,
expedite software
development, and
decrease the likelihood
of introducing additional
security vulnerabilities
into the software
by reusing software
modules and services
that have already had
their security posture
checked. This is
particularly important
for software that
implements security
functionality, such as
cryptographic modules
and protocols.

PW.4.4: Verify that acquired commer-
cial, open source, and all other third-
party software components comply
with the requirements, as defined by
the organization, throughout their
lifecycles.

Example 1: Regularly check whether there are publicly known vulnerabilities in the software
modules and services that vendors have not yet fixed.
Example 2: Build into the toolchain automatic detection of known vulnerabilities in
software components.
Example 3: Use existing results from commercial services for vetting the software modules
and services.
Example 4: Ensure that each software component is still actively maintained and has not reached
end of life; this should include new vulnerabilities found in the software being remediated.
Example 5: Determine a plan of action for each software component that is no longer being
maintained or will not be available in the near future.
Example 6: Confirm the integrity of software components through digital signatures or
other mechanisms.
Example 7: Review, analyze, and/or test code. See PW.7 and PW.8.

CP3.2, SR2.4,
SR3.1, SR3.2,
SE2.4, SE3.6

TA3-A,
SR3-B

4e(iii),
4e(iv),
4e(vi),
4e(ix),
4e(x)

SI-1, SM-9,
SM-10, DM-1

10, 14.2 ID.SC-4,
PR.DS-6

SA-9, SR-
3, SR-4,
SR-4(3),
SR-4(4)

3.1.2, 3.3.8 SA-4, SA-8,
SA-9, SA-
9(3), SR-3,
SR-4, SR-
4(3), SR-4(4

SP-DEV-002;
K0153, K0266;
S0298

8 WIND RIVER SECURE DEVELOPMENT LIFECYCLE (SDL) STANDARDS MAP

Practices Tasks Notional Implementation Examples BSIMM SAMM EO14028 IEC62443 ISO27034 ASVS NISTCSF SP800-53 SP800-160 SP800-161 SP800-181 SP800-216

Configure the
Compilation, Interpreter,
and Build Processes
to Improve Executable
Security (PW.6):
Decrease the number of
security vulnerabilities in
the software and reduce
costs by eliminating
vulnerabilities before
testing occurs.

PW.6.1: Use compiler, interpreter, and
build tools that offer features to improve
executable security.

Example 1: Use up-to-date versions of compiler, interpreter, and build tools.
Example 2: Follow change management processes when deploying or updating compiler,
interpreter, and build tools, and audit all unexpected changes to tools.
Example 3: Regularly validate the authenticity and integrity of compiler, interpreter, and build
tools. See PO.3.

SE2.4 4e(iv),
4e(ix)

SI-2 SA-15 SA-15

PW.6.2: Determine which compiler,
interpreter, and build tool features
should be used and how each should be
configured, then implement and use the
approved configurations.

Example 1: Enable compiler features that produce warnings for poorly secured code during
the compilation process.
Example 2: Implement the clean build concept, where all compiler warnings are treated as
errors and eliminated except those determined to be false positives or irrelevant.
Example 3: Perform all builds in a dedicated, highly controlled build environment.
Example 4: Enable compiler features that randomize or obfuscate execution characteristics, such
as memory location usage, that would otherwise be predictable and thus potentially exploitable.
Example 5: Test to ensure that the features are working as expected and are not inadvertently
causing any operational issues or other problems.
Example 6: Continuously verify that the approved configurations are being used.
Example 7: Make the approved tool configurations available as configuration-as-code so
developers can readily use them.

SE2.4, SE3.2 4e(iv),
4e(ix)

SI-2 14.1,
14.2.1

SA-15, SR-9 SA-15, SR-9 K0039, K0070

Review and/or Analyze
Human-Readable
Code to Identify
Vulnerabilities and
Verify Compliance with
Security Requirements
(PW.7): Help identify
vulnerabilities so that they
can be corrected before
the software is released
to prevent exploitation.
Using automated
methods lowers the effort
and resources needed
to detect vulnerabilities.
Human-readable code
includes source code,
scripts, and any other
form of code that an
organization deems
human-readable.

PW.7.1: Determine whether code review
(a person looks directly at the code to
find issues) and/or code analysis (tools
are used to find issues in code, either in
a fully automated way or in conjunction
with a person) should be used, as defined
by the organization.

Example 1: Follow the organization’s policies or guidelines for when code review should be
performed and how it should be conducted. This may include third-party code and reusable
code modules written in-house.
Example 2: Follow the organization’s policies or guidelines for when code analysis should be
performed and how it should be conducted.
Example 3: Choose code review and/or analysis methods based on the stage of the software.

CR1.5 4e(iv),
4e(ix)

SM-5, SI-1,
SVV-1

SA-11 SA-11 SP-DEV-002;
K0013, K0039,
K0070, K0153,
K0165; S0174

PW.7.2: Perform the code review and/
or code analysis based on the organi-
zation’s secure coding standards, and
record and triage all discovered issues
and recommended remediations in the
development team’s workflow or issue
tracking system.

Example 1: Perform peer review of code, and review any existing code review, analysis, or testing
results as part of the peer review.
Example 2: Use expert reviewers to check code for backdoors and other malicious content.
Example 3: Use peer reviewing tools that facilitate the peer review process, and document all
discussions and other feedback.
Example 4: Use a static analysis tool to automatically check code for vulnerabilities and
compliance with the organization’s secure coding standards with a human reviewing the issues
reported by the tool and remediating them as necessary.
Example 5: Use review checklists to verify that the code complies with the requirements.
Example 6: Use automated tools to identify and remediate documented and verified
unsafe software practices on a continuous basis as human-readable code is checked into the
code repository.
Example 7: Identify and document the root causes of discovered issues.
Example 8: Document lessons learned from code review and analysis in a wiki that developers can
access and search.

CR1.2, CR1.4,
CR1.6, CR2.6,
CR2.7, CR3.4,
CR3.5

IR1-B,
IR2-A,
IR2-B, IR3-A

4e(iv),
4e(v),
4e(ix)

SI-1, SVV-1,
SVV-2

7.3.6 1.1.7, 10 SA-11,
SA-11(1),
SA-11(4),
SA-15(7)

SA-11,
SA-11(1),
SA-11(4),
SA-15(7)

SP-DEV-001,
SP-DEV-002;
T0013, T0111,
T0176, T0267,
T0516; K0009,
K0039, K0070,
K0140, K0624;
S0019, S0060,
S0078, S0137,
S0149, S0167,
S0174, S0242,
S0266; A0007,
A0015, A0036,
A0044, A0047

9 WIND RIVER SECURE DEVELOPMENT LIFECYCLE (SDL) STANDARDS MAP

Practices Tasks Notional Implementation Examples BSIMM SAMM EO14028 IEC62443 ISO27034 ASVS NISTCSF SP800-53 SP800-160 SP800-161 SP800-181 SP800-216

Test Executable Code to
Identify Vulnerabilities
and Verify Compliance
with Security
Requirements (PW.8):
Help identify
vulnerabilities so that they
can be corrected before
the software is released
in order to prevent
exploitation. Using
automated methods
lowers the effort and
resources needed to
detect vulnerabilities and
improves traceability and
repeatability. Executable
code includes binaries,
directly executed
bytecode and source
code, and any other
form of code that an
organization deems
executable.

PW.8.1: Determine whether executable
code testing should be performed to find
vulnerabilities not identified by previous
reviews, analysis, or testing and, if so,
which types of testing should be used.

Example 1: Follow the organization’s policies or guidelines for when code testing should be
performed and how it should be conducted (e.g., within a sandboxed environment). This may
include third-party executable code and reusable executable code modules written in-house.
Example 2: Choose testing methods based on the stage of the software.

PT2.3 4e(ix) SVV-1, SVV-
2, SVV-3,
SVV-4, SVV-5

SA-11 SA-11 SP-DEV-001,
SP-DEV-002;
T0456; K0013,
K0039, K0070,
K0153, K0165,
K0342, K0367,
K0536, K0624;
S0001, S0015,
S0026, S0061,
S0083, S0112,
S0135

PW.8.2: Scope the testing, design the
tests, perform the testing, and docu-
ment the results, including recording
and triaging all discovered issues and
recommended remediations in the
development team’s workflow or issue
tracking system.

Example 1: Perform robust functional testing of security features.
Example 2: Integrate dynamic vulnerability testing into the project’s automated test suite.
Example 3: Incorporate tests for previously reported vulnerabilities into the project’s test suite
to ensure that errors are not reintroduced.
Example 4: Take into consideration the infrastructures and technology stacks that the software
will be used with in production when developing test plans.
Example 5: Use fuzz testing tools to find issues with input handling.
Example 6: If resources are available, use penetration testing to simulate how an attacker
might attempt to compromise the software in high-risk scenarios.
Example 7: Identify and record the root causes of discovered issues.
Example 8: Document lessons learned from code testing in a wiki that developers can access
and search.
Example 9: Use source code, design records, and other resources when developing test plans.

ST1.1, ST1.3,
ST1.4, ST2.4,
ST2.5, ST2.6,
ST3.3, ST3.4,
ST3.5, ST3.6,
PT1.1, PT1.2,
PT1.3, PT3.1

ST1-A,
ST1-B,
ST2-A,
ST2-B,
ST3-A

4e(iv),
4e(v),
4e(ix)

SM-5, SM-13,
SI-1, SVV-1,
SVV-2, SVV-
3, SVV-4,
SVV-5

7.3.6 SA-11,
SA-11(5),
SA-11(8),
SA-15(7)

SA-11,
SA-11(5),
SA-11(8),
SA-15(7)

SP-DEV-001,
SP-DEV-002;
T0013, T0028,
T0169, T0176,
T0253, T0266,
T0456, T0516;
K0009, K0039,
K0070, K0272,
K0339, K0342,
K0362, K0536,
K0624; S0001,
S0015, S0046,
S0051, S0078,
S0081, S0083,
S0135, S0137,
S0167, S0242;
A0015

PW.9.2: Implement the default settings
(or groups of default settings, if appli-
cable), and document each setting for
software administrators.

Example 1: Verify that the approved configuration is in place for the software.
Example 2: Document each setting’s purpose, options, default value, security relevance,
potential operational impact, and relationships with other settings.
Example 3: Use authoritative programmatic technical mechanisms to record how each setting
can be implemented and assessed by software administrators.
Example 4: Store the default configuration in a usable format and follow change control
practices for modifying it (e.g., configuration-as-code).

SE2.2 OE1-A 4e(iv),
4e(ix)

SG-3 SA-5, SA-
8(23)

SA-5, SA-
8(23)

SP-DEV-001;
K0009, K0039,
K0073, K0153,
K0165, K0275,
K0531

Identify and Confirm
Vulnerabilities on an
Ongoing Basis (RV.1):
Help ensure that
vulnerabilities are
identified more quickly
so that they can be
remediated more quickly
in accordance with risk,
reducing the window of
opportunity for attackers.

RV.1.1: Gather information from soft-
ware acquirers, users, and public sourc-
es on potential vulnerabilities in the
software and third-party components
that the software uses, and investigate
all credible reports.

Example 1: Monitor vulnerability databases , security mailing lists, and other sources of
vulnerability reports through manual or automated means.
Example 2: Use threat intelligence sources to better understand how vulnerabilities in general
are being exploited.
Example 3: Automatically review provenance and software composition data for all software
components to identify any new vulnerabilities they have.

AM1.5,
CMVM1.2,
CMVM2.1,
CMVM3.4,
CMVM3.7

IM1-A,
IM2-B,
EH1-B

4e(iv),
4e(vi),
4e(viii),
4e(ix)

DM-1, DM-2,
DM-3

SA-10, SR-
3, SR-4

SA-10, SR-3,
SR-4

K0009, K0038,
K0040, K0070,
K0161, K0362;
S0078

RV.1.2: Review, analyze, and/or test
the software’s code to identify or con-
firm the presence of previously unde-
tected vulnerabilities.

Example 1: Configure the toolchain to perform automated code analysis and testing on a regular
or continuous basis for all supported releases
Example 2: See PW.7 and PW.8.

CMVM3.1 4e(iv),
4e(vi),
4e(viii),
4e(ix)

SI-1, SVV-
2, SVV-3,
SVV-4, DM-1,
DM-2

7.3.6 SA-11 SA-11 SP-DEV-002;
K0009, K0039,
K0153

RV.1.3: Have a policy that addresses
vulnerability disclosure and remediation,
and implement the roles, responsibili-
ties, and processes needed to support
that policy.

Example 1: Establish a vulnerability disclosure program, and make it easy for security
researchers to learn about your program and report possible vulnerabilities.
Example 2: Have a Product Security Incident Response Team (PSIRT) and processes in place to
handle the responses to vulnerability reports and incidents, including communications plans for
all stakeholders.
Example 3: Have a security response playbook to handle a generic reported vulnerability, a
report of zero-days, a vulnerability being exploited in the wild, and a major ongoing incident
involving multiple parties and open source software components.
Example 4: Periodically conduct exercises of the product security incident response processes.

CMVM1.1,
CMVM2.1,
CMVM3.3,
CMVM3.7

IM1-A,
IM1-B,
IM2-A,
IM2-B

4e(viii),
4e(ix)

DM-1, DM-2,
DM-3, DM-4,
DM-5

SA-15(10) 3.3.8 SA-15(10) K0041, K0042,
K0151, K0292,
K0317; S0054;
A0025

All

10 WIND RIVER SECURE DEVELOPMENT LIFECYCLE (SDL) STANDARDS MAP

Note: The information in this document is provided as is and no guarantee or warranty is given that the information is fit for any particular purpose. Always refer to the original NIST SP 800-218 standard as the final authority on the mapping to Security standards.

Practices Tasks Notional Implementation Examples BSIMM SAMM EO14028 IEC62443 ISO27034 ASVS NISTCSF SP800-53 SP800-160 SP800-161 SP800-181 SP800-216

Assess, Prioritize, and
Remediate Vulnerabili-
ties (RV.2): Help ensure
that vulnerabilities are re-
mediated in accordance
with risk to reduce the
window of opportunity
for attackers.

RV.2.1: Analyze each vulnerability to
gather sufficient information about
risk to plan its remediation or other
risk response.

Example 1: Use existing issue tracking software to record each vulnerability.
Example 2: Perform risk calculations for each vulnerability based on estimates of its
exploitability, the potential impact if exploited, and any other relevant characteristics.

CMVM1.2,
CMVM2.2

4e(iv),
4e(viii),
4e(ix)

DM-2, DM-3 SA-10, SA-
15(7)

3.3.8 SA-15(7) K0009, K0039,
K0070, K0161,
K0165; S0078

RV.2.2: Plan and implement risk re-
sponses for vulnerabilities.

Example 1: Make a risk-based decision as to whether each vulnerability will be remediated or
if the risk will be addressed through other means (e.g., risk acceptance, risk transference), and
prioritize any actions to be taken.
Example 2: If a permanent mitigation for a vulnerability is not yet available, determine how the
vulnerability can be temporarily mitigated until the permanent solution is available, and add that
temporary remediation to the plan.
Example 3: Develop and release security advisories that provide the necessary information to
software acquirers, including descriptions of what the vulnerabilities are, how to find instances
of the vulnerable software, and how to address them (e.g., where to get patches and what the
patches change in the software; what configuration settings may need to be changed; how
temporary workarounds could be implemented).
Example 4: Deliver remediations to acquirers via an automated and trusted delivery mechanism.
A single remediation could address multiple vulnerabilities.
Example 5: Update records of design decisions, risk responses, and approved exceptions as
needed. See PW.1.2.

CMVM2.1 4e(iv),
4e(vi),
4e(viii),
4e(ix)

DM-4 SA-5, SA-
10, SA-11,
SA-15(7)

3.3.8 SA-5, SA-8,
SA-10, SA-
11, SA-15(7)

T0163, T0229,
T0264; K0009,
K0070

RV.3.3: Review the software for similar
vulnerabilities to eradicate a class of
vulnerabilities, and proactively fix them
rather than waiting for external reports.

Example 1: See PW.7 and PW.8. CR3.3,
CMVM3.1

4e(iv),
4e(viii),
4e(ix)

SI-1, DM-3,
DM-4

SA-11 SA-11 SP-DEV-001,
SP-DEV-002;
K0009, K0039,
K0070

RV.3.4: Review the SDLC process, and
update it if appropriate to prevent (or
reduce the likelihood of) the root cause
recurring in updates to the software or in
new software that is created.

Example 1: Record lessons learned through root cause analysis in a wiki that developers can
access and search.
Example 2: Plan and implement changes to the appropriate SDLC practices.

CP3.3,
CMVM3.2

4e(ix) DM-6 SA-15 SA-15 K0009, K0039,
K0070

