
This document provides an overview of two kernel types: the microkernel and the monolithic kernel.1 While the
focus here is on kernels, developers and users experience kernels to a large degree through their interactions with an
operating system. Questions such as, “Which kernel is best for my team or project?” or “Should I really move our devel-
opment from one kernel type to another?” tend to be answered in the context of an operating system, investments
in existing IP on a given OS, and the overhead associated with switching from one OS system to another. Linux is
perhaps the best-known example of an OS with a monolithic kernel, and our own VxWorks® also features a monolithic
kernel. At Wind River®, discussions about the merit of one kernel versus the other come up almost exclusively in
conversations with our automotive customers who are familiar with the microkernel-based QNX Neutrino Real-Time
Operating System.

Kernels are typically described as either a process or program at the core of an OS that manages the operation of a
system’s hardware and software. In a monolithic kernel, the entire OS runs in a single program in kernel mode, i.e., the
kernel services and other OS functions such as device drivers, protocol stacks, and file systems are executing in the
same address space. In a microkernel implementation, only the minimal number of kernel services run in kernel mode,
while all other OS functions execute in user modes and different address spaces. Each approach comes with benefits
and drawbacks. With each successive generation, kernels of either type are refined to address the concerns associated
with each approach.

The primary advantage of a monolithic kernel is faster processing. Because all elements of the kernel, including the
scheduler, file system, memory management, networking stacks, device drivers, and so on, are in the same address
space, message passing between address spaces is not required. Known disadvantages of monolithic kernels are
that they are larger than microkernel alternatives and historically have required a recompile to add new functionality or
perform maintenance updates. Most monolithic kernels today are not completely monolithic — they can dynamically
load kernel modules, meaning functionality can be added to the kernel without having to recompile the whole binary.

An Overview of Monolithic
and Microkernel Architectures

1 There are a minimum of three types of kernel: monolithic, micro, and hybrid (TechTarget). Other sources also describe exokernels and nanokernels.

1

Application

Hardware

Application

Hardware

Memory ManagementBasic IPC

Monolithic Kernel

Scheduling

User
Space

Kernel
Space

Microkernel

System Calls

IPC, File System

Device Driver, Dispatcher

Application
IPC

Protocol
Stack

Device
Driver

File
Server

Scheduler
Memory Management

Figure 1. A comparison of microkernel and monolithic kernel architectures

The primary advantage of a microkernel architecture is it size, with most microkernels capable of fitting in a given sys-
tem’s L1 cache. This is accomplished by limiting the kernel to only the most important components, such as inter-process
communication, basic scheduling, and basic memory management. To support these bare-bones basics, OS capabilities
require communication via message passing to other OS capabilities running in user space. This communication from
kernel to user space involves an overhead, resulting in slower processing.

WHY A MONOLITHIC KERNEL?
There are numerous reasons to use a monolithic kernel:

WHY SHOULD I CARE?
In most scenarios, the design and architecture of an OS used by a software development team is far less important
than whether the OS does the job required. If the OS offers the features needed and is reliable, proven, and provides the
performance, determinism, and other characteristics needed to fulfill the requirements of the end product, then the way
it works under the hood is not a factor likely to impact the project outcome.

For development teams with existing IP developed for an OS with either kernel type, the architectural considerations and
trade-offs of monolithic vs. microkernel are secondary to the effort required to migrate between those OSes. Rewriting
code to map to a different set of APIs is nontrivial, and managing those changes through an abstraction layer would
introduce overhead.

Teams wishing to shift to Wind River while preserving their investment in IP based on an OS with a microkernel
architecture should consider Wind River Helix™ Virtualization Platform. Helix Platform can host such an OS.

Also for development teams that prefer a microkernel architecture, the Wind River hypervisor is a Type 1 hypervisor with
a messaging microkernel that uses either synchronous or asynchronous communications between systems, events,
and beyond to provide deterministic application performance.

An Overview of Monolithic and Microkernel Architectures

Wind River is a global leader of software for mission-critical intelligent systems. For 40 years, the company has been an innovator and pioneer, powering billions of devices and systems that require
the highest levels of security, safety, and reliability. Wind River offers a comprehensive portfolio of software and expertise that are accelerating digital transformation across industries.

© 2023 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. Rev. 03/2023

1.	 Monolithic kernels offer higher performance by
reducing layers of abstraction. Communication
between kernel components is therefore more efficient,
because they are all executed in a single address space.

2.	 In a monolithic kernel, a service can be obtained
through a single system call rather than needing to
exchange IPC messages between processes to obtain
the service.

3.	 The design of a monolithic kernel in simpler because
the kernel components are all totally integrated. The
kernel doesn’t have to account for an infinite number of
configurations or dependencies that may or may not be
present in a microkernel.

4.	 There is less overhead for context switches because the
system calls in a monolithic kernel are all made in the
same address space.

5.	 Device drivers are more responsive and easier to
manage because they are integrated into the kernel and
operate in the same address space.

6.	 It is easier to implement, maintain, and upgrade the
kernel because all the components are compiled in a
single executable.

7.	 For the same functionality, a monolithic kernel requires
less code to implement and is less expensive to certify.

https://www.windriver.com/studio/edge-devices/virtualized-os

