
Mitigation of interference in Multicore Processors | Page A

CONTENTS
1. Multicore certification in avionics									 1

2. Interference and interference channels								 2

3. Identifying interference channels									 4
	 3.1 Platform analysis										 5
	 3.2 Examples												 6
	 3.3 What comes next?										 7

4. Mitigating interference channels									 8
	 4.1 Hardware mitigation approaches								 9
	 4.2 Software mitigation approaches								 12
	 4.3 Hybrid mitigation approaches									 15
	 4.4 Implementing mitigations									 18

5. Verifying mitigations											 20
	 5.1 How to verify mitigations at the platform level						 22
	 5.2 How to verify mitigations at the software level						 23
	 5.3 Operating system platform verification							 23

6. Conclusion												 24

	

Mitigation of interference in Multicore Processors | Page 1

1.

MULTICORE
CERTIFICATION IN
AVIONICS

With the embedded avionics industry’s inevitable
move towards the use of multicore processors
for new projects, it is more important than ever
to understand the certification landscape for
multicore avionics systems.

Increased adoption of multicore processors by
the embedded avionics industry is being driven by
ever-increasing demands for software functionality,
improved SWaP (size, weight and power) characteristics,
and increasing challenges in sourcing high-performance
single-core processors. While using multicore processors
for embedded avionics offers many benefits, doing so
in DO-178C or ED-12C projects requires meeting the
additional objectives of AC 20-193 (released January
2024; for DO-178C projects) or AMC 20-193 (released
January 2022; for ED-12C projects).

Much of the challenge in meeting A(M)C 20-193
objectives hinges on understanding and mitigating
multicore interference and providing evidence that
the timing deadlines of hosted applications will always
be met. In this paper, we do a deep dive on identifying
interference channels, mitigation of interference
and verification of mitigations as required to meet
A(M)C 20-193’s MCP_Resource_Usage_3 objective,
and we show how Wind River® and Rapita Systems
solutions support this process.

What is A(M)C 20-193?

A(M)C 20-193 guidance is a joint effort by the European
Union Aviation Safety Agency (EASA) and Federal
Aviation Assiociation (FAA).

It provides an acceptable means of compliance for
showing that multicore processors (MCPs) used in
airborne systems and equipment meet the necessary
airworthiness specifications. This document is crucial
for ensuring that MCPs, which are processors with
multiple cores, operate safely and reliably in aviation
environments.

Page 2 | Mitigation of interference in Multicore Processors

2.

INTERFERENCE AND
INTERFERENCE
CHANNELS

Page 2 | Mitigation of interference in Multicore Processors

Mitigation of Interference in Multicore Processors | Page 3

Multicore interference is the cornerstone of
A(M)C 20-193 compliance. Interference can be
caused by different cores in a multicore processor
taking actions that interact with each other.
This could include accesses to the same shared
resource, synchronization events, coherency
mechanisms and even thermal behavior.

The impact of interference ranges from no noticeable
effect to impacts on the execution behavior of hosted
software, including properties such as average and
worst-case execution time (WCET), predictability of timing
behavior, and data coupling and control coupling.

Interference can originate from various sources
on a multicore processor. A(M)C 20-193 call these
“interference channels”, and define an interference
channel as “a platform property that may cause
interference between software applications or tasks.”
Many different interference channels exist. These can
come from multicore processors or peripheral devices
on a platform. Multicore platforms tend to have more
interference channels than you may first expect.
Some of these are obvious sources of interference
that can be easily identified from analysis of reference
documentation (see Platform Analysis on page 5), while
others are less obvious and may only be identified during
testing (see Platform Characterization on page 22).

For discussion purposes, and as an aid to understanding
where interference channels may come from and how
they can be discovered, it can be helpful to categorize
interference channels based on their properties.
Throughout this paper, we will categorize interference
channels as either Direct or Indirect.

Direct interference channels involve direct
competition for resources between tasks or applications
running on different cores. A common example of this
is multiple cores sharing a cache, for example L2 cache,
where one core can invalidate cache lines written by
another core. This can cause cache misses, which have
a performance penalty. We go into more detail on this
example in Identifying interference channels: Examples on
page 6. For a skilled engineer, many Direct interference
channels can be intuitively discovered from a high-level
understanding of the multicore platform and related
devices. Analysis of technical reference documentation
is needed to support this discovery and understand the
technical definitions of the interference channel.

Indirect interference channels arise where hardware
unpredictability can impact software behavior. This may
be due to priorities or mode changes in hardware such
as events triggering a cache policy change, or traffic
triggering a routing change. An example of the latter
arises when interconnect routing can depend according
to traffic. On a ring buffer where multiple cores and
devices are attached, there will be a shortest route
between a given core and a device. If that route already
has a lot of traffic, however, the system may reroute
additional traffic to a different route, which may have a
greater latency and more variability in execution time
(Figure 1). Indirect interference channels are often more
challenging to discover than Direct ones, and identifying
them may require a more detailed understanding of
the components in a multicore platform or devices and
how they interact with each other. Analysis of technical
reference documentation should support this discovery.

Figure 1 – Example of an indirect interference channel caused by contention for resources on a ring buffer. Due to accesses
from Core 0 to Resource A, Core 1 is rerouted to take the shortest alternative route to access Resource D.

Page 4 | Mitigation of interference in Multicore Processors

3.

IDENTIFYING
INTERFERENCE
CHANNELS

Page 4 | Mitigation of interference in Multicore Processors

Mitigation of interference in Multicore Processors | Page 5

Identifying interference channels is a key activity
in A(M)C 20-193 projects.

Interference is a central consideration in most
A(M)C objectives, and objective MCP_Resource_
Usage_3 specifically asks a certification applicant to
demonstrate that interference channels on a platform
have been identified, and that any mitigations applied
to those channels have been verified; see Verifying
mitigations on page 20.

As the interference channels on a platform can have
large effects on software performance and required
verification effort, it is important to identify them as
early as possible during an A(M)C 20-193 project. This
is also important due to the scale of required activities –
multicore platforms may include many more interference
channels than you first think, with a typical platform having
around 20-250 channels, depending on its complexity.
Some of these may be easy to discover, while it may be
more challenging to discover others (Figure 2).

The hardware that is used in an A(M)C 20-193 project
can have a huge impact on the interference channels in
effect on a platform, on the impact of those interference
channels, and on the required verification effort.
Because of this, it makes sense to evaluate different
platforms before embarking on formal activities in an
A(M)C 20-193 project. Key elements of a platform that
should be understood during such an evaluation include
visibility of system interrupts and context switches,
mitigation strategies (see Mitigating interference channels
on page 8), and the availability of hardware event
monitoring units (see Platform Characterization on page
22).

In this chapter, we will cover how you can identify
interference channels (next section), present some
examples of doing so (page 6), and briefly discuss what
comes next (page 7).

3.1 How to identify interference channels
(Platform Analysis)

If you are aiming for A(M)C 20-193 certification, then
you should use a reproducible and well-defined
process to identify interference channels on a platform.
This process should be defined and included in your
DO-178C/ED-12C planning documentation as per
A(M)C 20-193’s planning objectives.

Identification of interference channels requires a deep
understanding of every component of a multicore
platform. This can only be gained through analysis of
detailed technical documentation about the behavior
of a multicore processor and devices. To support
A(M)C 20-193 compliance, you should ensure that this
information is available and in sufficient detail for every
element of the platform you intend to use.

Rapita Systems have identified interference channels
on a range of multicore platforms with different
processors and devices. Rapita identifies interference
channels as part of Platform Analysis activities in Rapita’s
MACH178 solution, which provides support for meeting
A(M)C 20-193 objectives. MACH178 includes processes
that define how the analysis is performed, and
templates to support writing DO-178C/ED-12C planning
documents, including the Software Verification Plan.

The analysis involves first identifying hardware resources
present on the platform, and then identifying and
documenting the platform properties that can cause
interference (interference channels) on each resource,
as well as relevant information about those channels.
This documentation includes a description of how each
interference channel can cause interference between
different applications or tasks, configuration settings that
may affect each channel, references to the sources of
information from which each interference channel was
identified, and potential mitigations of each interference
channel that have been identified during the analysis
(see Mitigating interference channels on page 8).

In the previous chapter, we introduced terminology to
categorize interference channels as being either Direct
or Indirect to understand where interference channels
come from and how they are discovered. For most
multicore platforms, during an initial analysis, a range
of Direct and Indirect interference channels will be
identified and documented. Platforms are likely to have
interference channels that can’t be identified from an
initial analysis, and which can only be discovered during
verification and characterization of other interference
channels (see Platform Characterization on page 22).
When these are discovered, they are analyzed and
documented.

Figure 2 – Multicore platforms may have many more
interference channels than you first think, and some may be

difficult to discover.

Page 6 | Mitigation of interference in Multicore Processors

Figure 3 – A quad core system with private L1 and shared L2 caches. Example Interference Channels 1 and 2 may be present in
the L2 Cache whilst the Example 3 can exist in the L1 caches, despite the fact that they are private.

3.2 Identifying interference channels:
Examples

As an illustration of identifying interference channels,
consider a hypothetical quad-core system with two levels
of cache: L1, which is private to each core, and L2, which
is shared by all cores (Figure 3). The L2 cache in the
system is accessed using an interconnect shared by all
cores through a shared cache controller. Many multicore
processors share properties with this hypothetical
system.

To identify interference channels on the platform, we
need to understand in detail how our platform works by
analyzing the technical documentation that describes
the functionality of the cache. The following are just a few
examples of possible interference channels relating to
the cache architecture in this hypothetical system.

Example I: Invalidation of cache lines

One interference channel we may identify on our
platform is the invalidation of cache lines by other cores.
Interference can result when one core places data in a
cache line and another core replaces that data. Unable
to retrieve cached data from the L2 cache as it has
been replaced, the first core will need to access higher
levels of the memory hierarchy to retrieve the data,
and this comes with a performance penalty. This is a
common interference channel associated with the cache
architecture in our example.

Example II: Cache controller requests

A less obvious example relates to cache controllers,
which manage the requests being made to a cache.
Cache controllers receive requests from cores,

such as data linefills, instruction linefills, reads, and
non-cacheable reads.
A cache controller is only able to service a limited number
of simultaneous in-flight requests at once depending on
its architecture and complexity. When multiple requests
are made concurrently by multiple cores, a controller
must serialize these operations. If sufficient requests
are made, the queues and buffers that perform this
serialization may become full, leading to new requests
not being accepted. As this example involves direct
contention for a resource (the cache controller), we’d
class it as a Direct interference channel, but it is one that
might not be identified from a preliminary analysis of
interference channels.

Example III : Cache coherency protocols

Taking a step down into the L1 cache, which is private to
each core in our example, you might assume that there
is no sharing of a resource, so no interference channels
are present. However, a cache line may be shared
between multiple L1 caches. If data is changed in one
cache, it must be ensured that this change is broadcast
to the other cores to ensure that no stale data is used. To
support this, many platforms include cache coherency
protocols (snoops) that are broadcast to other cores,
allowing them to check whether the address of the
modified data is also present in their private L1 cache.
If the same address is present, it must be invalidated
to ensure coherency, forcing the local core intending to
use it to first access L2, which is associated with a higher
latency. This is an example of an Indirect interference
channel where performance can be affected not by
direct contention for a resource, but by an indirect effect
of the multicore architecture.

Mitigation of interference in Multicore Processors | Page 7

Examples 1 and 2 are Direct channels, while Example
3 is an Indirect channel using our definitions (see
Interference and interference channels on page 2). For a
given multicore platform, it may be possible to identify
interference channels like this through analysis of
reference documentation alone. On a real multicore
platform, there would be many more Direct and Indirect
channels that could be discovered from this type of
analysis.

Real platforms will likely have channels that can’t be
detected through analysis alone, and which can only be
discovered during testing (see Platform Characterization
on page 22). At Rapita Systems, we have yet to encounter a
multicore platform where no such interference channels
were found. Examples of interference channels that can
only be discovered through testing range in complexity
from incorrect configuration register definitions to
unintended features. One example of the latter that has
been discovered by Rapita Systems is asymmetric bus
arbitration on an old, widely-used multicore processor.
On this processor, when all cores make accesses to
saturate the bandwidth of the bus, core 0 will be treated
preferentially, and this behavior can affect interference.

3.3 What comes next?

After you have identified the interference channels on
a platform, there are two main approaches to achieving
A(M)C 20-193 objectives.

The ideal approach is to find and implement
a means to mitigate the interference channel
and verify the mitigation according to
A(M)C 20-193’s MCP_Resource_Usage_3 objective.
For the purposes of this paper, and in alignment with
A(M)C 20-193, we define an interference channel as
having been mitigated if there is no observable impact

from the channel on performance of the multicore
system.

We will look at different approaches for mitigating
interference channels in Mitigating interference channels
on page 8, and at how mitigations can be verified in
Verifying mitigations on page 20.

It is not always possible to mitigate an interference
channel. Shared access to devices will almost always
be required, including access to devices that cannot be
partitioned easily on the hardware level, such as network
interfaces. In these cases, interference can be managed
through configuration or design to have better control
over the level of actual interference at runtime. While
this will not negate the need to verify the software’s
performance, it will allow the impact of the interference
channel on performance to be minimized, making it
more likely that the software will meet its performance
requirements. This complex topic, falls out of the scope
of this paper and may be discussed in a future paper.

If you have not mitigated an interference channel,
then you will need to verify the software’s timing
behavior and data coupling and control coupling
with respect to that interference channel to meet
A(M)C 20-193 objectives MCP_Software_1 and
MCP_Software_2.

Mitigating a channel and verifying the mitigation is
the preferable approach to take as, in addition to
negating the impact of the interference channel on
performance and making the system more reliable,
it also negates the need for additional verification
to meet A(M)C 20-193’s MCP_Software_1 and
MCP_Software_2 objectives, therefore reducing the
overall verification effort.

Page 8 | Mitigation of interference in Multicore Processors

4.

MITIGATING
INTERFERENCE
CHANNELS

Page 8 | Mitigation of interference in Multicore Processors

Mitigation of interference in Multicore Processors | Page 9

Mitigating interference channels is crucial in
the development of DO-178C/ED-12C multicore
software. Mitigation is necessary to improve
worst-case performance and reliability of
the software, and it allows an applicant to
reduce the scope of activities required to
meet A(M)C 20-193’s MCP_Software_1 and
MCP_Software_2 objectives.

The importance of mitigation should not be understated.
Multicore projects are complex, and the verification
activities required to meet A(M)C 20-193 objectives are
expensive. The more that the performance and reliability
of the software can be improved, and its verification
simplified, the better.

There are different approaches to mitigating interference
channels, and these can broadly be grouped into the
following approaches:

•	 Hardware-based approaches – These are based
on hardware capabilities and design. They may
be configured in hardware, but they are often
configured during initialization by a layer in the
platform software, such as an RTOS or bootloader.
Generally, these approaches are easier to implement
than software and hybrid approaches, and they are
more frequently used.

•	 Software-based approaches – These are based
on the way the software is architected and designed,
compiled and linked. This can also include the use
of specific mitigation code that operates during
runtime.

•	 Hybrid hardware/software approaches –
These include elements of both hardware and
software-based approaches.

All mitigations come with some trade-offs; usually,
a sacrifice of average-case performance is needed
to achieve better predictability and improved
worst-case performance. Some mitigations may also
impact the complexity of software, such as cache/
bandwidth partitioning implementations or applying
constraints on software architecture. When you first
choose which mitigations to apply, you may choose to
avoid these mitigations due to their expected impact on
average-case performance.

If, during analysis of your software performance, you
find that your software is particularly sensitive to a
related interference channel, or if your software fails to
meet its timing deadlines, you may choose to apply a
mitigation that you had previously chosen not to use. As
a result, you’ll need to repeat some verification activities.

Because of this, automation, traceability, and applying a
well-defined and repeatable procedure is essential for
efficiency. We cover this further in Verifying mitigations
on page 21.

In the upcoming sections, we will share examples of
approaches for mitigating interference based on the
categories listed above.

Then, later in the chapter (page 18), we will discuss
considerations for implementing mitigations, including
the pros and cons of different approaches, and how
much rework should be expected when selecting and
verifying mitigations.

4.1 Hardware mitigation approaches

Some approaches to mitigating interference channels
can broadly be categorized as being related to the
hardware and its configuration and driven by the
hardware design. These approaches are discovered
during Platform Analysis along with other mitigation
strategies (see Platform Analysis on page 22).

Common hardware mitigation approaches include the
following:

•	 Disabling cores
•	 Disabling devices or features
•	 Avoiding the use of complex devices
•	 Hardware partitioning of shared resources

Some of these approaches have trade-offs. For example,
applying an approach may be helpful for mitigating
interference channels, but this may come at the
expense of affecting average-case performance, the
ease of analyzing interference channels, predictability in
performance, or complexity.

For the purposes of this paper, an interference
channel is defined as having been mitigated if there
is no observable impact from the channel on the
performance of a multicore system.

Page 10 | Mitigation of interference in Multicore Processors

4.1.1 Disabling cores

One approach you may consider to mitigate interference
channels is to deactivate all but one core of a multicore
processor to make it behave almost like a single-core
processor (Figure 4).

You may assume that disabling all but one core will
automatically mean that you no longer need to follow
A(M)C 20-193 guidance, but this is not necessarily the
case, and additional activities will always be required
even if this strategy is used.

For example, if cores are disabled by hardware
configuration settings, you will need to provide evidence
that the cores are disabled and will remain so during
operation, for example in the case of a single event
upset, as per A(M)C 20-193’s planning objectives, which
provide guidance on deactivating cores.

Note that there are many other approaches to disabling
cores. Some of these may eliminate or reduce your
obligations for A(M)C 20-193 compliance, while others
will not. Your approach to disabling cores should be
discussed with your certification authority to determine
the extent to which A(M)C 20-193 objectives apply to
your project.

4.1.2 Disabling devices or features

If a device (such as a level of the memory hierarchy or
a peripheral) or feature (such as cache stashing) is not
needed, then disabling it can be an effective way of
mitigating interference channels (Figure 5). This can be
especially helpful where a device or feature has many
associated interference channels.

Selecting which devices or features to disable depends
on the architecture and functionality – not only of
the device itself, but also of the platform. Disabling a
level of cache such as L2, for example, will mitigate all
interference channels associated with it, but it will also
cause all accesses that would otherwise hit L2 to access
main memory instead. This might have a pathological
impact on interference channels associated with the
buses or interconnects between L2 and main memory,
as well as those associated with main memory.

The efficacy of trade-offs of performance for analyzability
and complexity for this mitigation therefore depend
entirely on the use case. If you are not going to use a
feature, disabling it comes with no trade-off.

For example, if you are not going to use cache stashing,
which allows cores or devices to preload the cache
with data it “may” later need, you might as well disable
the feature to reduce the scope of analysis activities
associated with meeting A(M)C 20-193’s software
objectives.

Note that disabling a device or feature does not
eliminate the need to perform verification activities,
but it changes the activities that must be performed.
A(M)C 20-193 requires evidence to be provided that
disabled devices or features are disabled and will
remain so during operation. These verification activities,
however, require much less effort than those needed to
analyze and characterize interference channels and their
impact on hosted software.

Figure 4 – Deactivating all but one core of a multicore
platform can avoid the need to meet A(M)C 20-193 objectives

entirely, depending on the method of deactivation.

Figure 5 – Deactivating devices or features can mitigate all
interference channels associated with them.

Disabling cores

Disabling cores for multicore processors and what
that means for A(M)C 20-193 compliance is a complex
topic.

Rapita Systems have developed a White Paper
dedicated to this.

For more information, contact Rapita Systems.

Mitigation of interference in Multicore Processors | Page 11

4.1.3 Avoiding the use of complex devices

In some cases, required functionality can be achieved
through the use of simpler or more complex devices
(Figure 6), and using a less complex device may help
mitigate interference.

For example, rather than using deeply embedded on-chip
peripherals with many interference channels, you may
instead opt to use off-chip (I2C, SPI, PCIe etc.) peripherals
with fewer potential interference channels.

As every interference channel adds additional
A(M)C 20-193 activities, simplifying a system in terms
of interference channel analysis will help reduce effort
required for certification of the software, though it may
increase effort required for certification of the hardware
(DO-254).

4.1.4 Hardware partitioning of shared resources

For many interference channels related to direct contention
on shared resources such as a cache, main memory,
or bandwidth, the simplest approach to mitigating the
interference channels is to partition the resources.

Hardware partitioning is a technique whereby isolated
access is enforced on non-overlapping parts of a resource.
This usually includes the isolation of faults within each
part and can reduce verification effort. Using the L2 cache
as an example, this partitioning mechanism can mitigate
interference channels associated with cache misses due
to direct contention for cache lines from multiple cores
(Figure 7).

Different partitioning methods have different performance
and complexity implications. Applying this partitioning
mechanism to the L2 cache would not necessarily mitigate
all interference channels associated with the L2 cache,
as there may be many other interference channels not
related to direct cache line contention. Examples of this
include internal buffers and queues that hold the lines
being accessed. It may be possible to partition these, often
through way partitioning, or it may not be possible due to
lack of accessibility, customizability or even visibility.

Figure 6 – A complex device will often have a greater number of interference channels associated with it than a simple one.
Replacing a complex device with a simpler off-chip one mitigates all interference channels associated with it and thereby simplifies

the effort required to meet A(M)C 20-193.

Figure 7 – Partitioning shared resources can mitigate interference channels; in this example, the L2 cache has been partitioned,
preventing cores from evicting the data of other cores.

Page 12 | Mitigation of interference in Multicore Processors

4.2 Software mitigation approaches

Some approaches to mitigating interference channels
can broadly be categorized as being based only on the
software that executes during runtime. This can include
the definition of a particular software architecture;
the choice of programming constructs, standards or
scheduling; or the implementation of a specific runtime
behavior.

Before you begin to design and write software, it is
important to consider the interference channels that
may be present on the system (as identified by Platform
Analysis, see page 5), and which of these you will mitigate
by software approaches and how. After all, changing the
software design, code or integration later in a project can
be expensive.

Common software mitigation approaches include the
following:
•	 Applying time partitioning
•	 Restricting resource usage to only one execution

context
•	 Using a client/server architecture
•	 Avoiding the use of shared memory
•	 Limiting data exchange to scheduling boundaries
•	 Selecting programming constructs and standards
•	 Segregating criticality

As in A(M)C 20-193, the term application is used in
this document to describe a software component
that implements a set of functionality and that can
be integrated into the system and executed without
depending on other applications. When executing an
application in the context of an operating system (OS)
platform with a protected address space, the term
process is often used, but bare-metal software or
virtual machines in a hypervisor can equally be seen as
applications according to this definition.

The term task when used in this document describes
a single thread of execution flow within an application
that can be scheduled to run on one of the cores of a
multicore system. Applications can have one or more
tasks, and these can all run on the same core, or on
different cores.

4.2.1 Applying time partitioning

Time partitioning is a technique with which software
applications are isolated so that each application
has no impact on the timing performance of another
application. This is exceptionally challenging to
implement in a multicore system due to the coupling
effect of interference. Concurrent applications are
coupled through the interference they generate and
are sensitive to, even if there are no functional data or
control dependencies within the software itself.

“Robust time partitioning” is referenced throughout
the A(M)C 20-193 objectives and highlighted in the
MCP_Software_2 objective. A(M)C 20-193 assert
that robust time partitioning would be achieved if no
interference channels can cause applications to consume
more than their allocated time resources (see box below
for the full definition). To guarantee this for a system,
it would be necessary to mitigate every interference
channel such that there are no interference channels
active across the entire platform. This is impossible to
do in practice.

Applying time partitioning can still, however, have many
merits when it comes to mitigating interference channels.
Allowing only a single task to use a particular shared
resource during a defined amount of time can mitigate
potential interference from shared accesses.

Full A(M)C 20-193 definition for robust time
partitioning

Both AC 20-193 and AMC 20-193 state:

“Robust time partitioning (on an MCP): this is achieved
when, as a result of mitigating the time interference
between partitions hosted on different cores, no
software partition consumes more than its allocation
of execution time on the core(s) on which it executes,
irrespective of whether partitions are executing on
none of the other active cores or on one, more than
one, or all of the other active cores.”

Figure 8 – Restricting the execution time of tasks to time windows can mitigate interference channel

Mitigation of interference in Multicore Processors | Page 13

For example, for software with multiple tasks with heavy
access patterns to main memory, time partitioning could
be applied by scheduling these tasks in separate time
slices to avoid concurrent accesses (Figure 8). This
mitigation requires a timing event to trigger the start
and stop of the thread. This timing event may make use
of a shared resource that could exercise one or more
interference channels. Additionally, you can architect
your software to make time partitioning more effective
by splitting functionality that accesses multiple resources
into more granular tasks, each of which accesses fewer
resources. For example, if you have a software component
that performs read, process and write functionality,
you could split this into three tasks, each with its own
resource access profile. This makes it easier to time slice
the software to take account of resource usage patterns.
Time partitioning is typically implemented by allocating
periodic time windows during which a particular task or
application is executed.

While time partitioning can be an effective mitigation
strategy, it constrains the scheduling and/or software
architecture. Applying time partitioning to minimize
concurrent use of shared resources requires a method of
synchronization across cores. Implementing this by hand
for a project can be expensive, but it is usually available
out of the box in OS platforms such as VxWorks® and
Helix™ Virtualization Platform.

4.2.2 Restricting resource usage to only one
execution context

In cases in which interference channels are related to
just one resource, restricting access to this resource to
only a single task on a specific core can be an effective
mitigation. Implementing this mitigation can require
different activities during software architecture, design,
implementation, or verification to ensure that the
resource is only used by one task on one core.

Some of the following mitigations such as Using a client/
server architecture below and Applying space partitioning
on page 16 can support this mitigation approach by
controlling access to a restricted resource by other tasks,
or guaranteeing exclusive access through hardware
protection. While this can be an effective mitigation,
the challenge of using the approach is in identifying the
resources and interference channels on which it can be
applied.

4.2.3 Using a client/server architecture

It may be that the hardware operations that govern
the mediation and serialization of accesses to a given
resource are poorly or not at all documented, making
them difficult to characterize or mitigate. Using a
client/server model in your software architecture to
mediate and serialize accesses to resources, thereby
avoiding any hardware mechanisms with associated
interference channels, mitigates interference from
access serialization (Figure 9).

You may, for example, implement a storage server
application that mediates and serializes accesses to
non-volatile memory (NVM) for all applications. This
form of software-mediated access to shared devices lets
you tightly define how serialization occurs rather than
leaving it at the mercy of hardware, and it can mitigate
interference. While this mitigation can avoid the use of
hardware features that are difficult to analyze, using it will
often come at the expense of increasing the complexity
of the software architecture.

Figure 10 – Client/server architecture mediates and serializes accesses to resources. This avoids any hardware mechanisms with
associated interference channels.

Page 14 | Mitigation of interference in Multicore Processors

4.2.4 Avoiding the use of shared memory

Accessing the same memory pages from tasks on
different cores concurrently is a source of interference
analogous to some of those discussed previously. This
can be mitigated by software design, for example by
setting up separate copies of the OS components and
libraries for each core, or by preventing allocation of
the same memory pages from tasks on different cores
(Figure 10).

However, exchanging data between, or synchronizing
tasks on different cores typically requires memory
pages to be shared or copied between cores, which can
exercise interference channels. Restrictions on the API
for data exchange can be used as a mitigation on the
software level, including limiting data exchange to certain
time windows as described in Limiting data exchanged to
scheduling boundaries (right).

It is also possible to apply hardware-based mechanisms
to add a protection level (e.g. the MMU or IOMMU).
This hybrid approach can help support verification and
validation activities and is described in Applying space
partitioning on page 16.

4.2.5 Limiting data exchange to scheduling
boundaries

Limiting data exchange between tasks to occur only
at scheduling boundaries can mitigate interference. If
multiple tasks execute concurrently with a high degree
of coupling through communication or shared data,
the sections that handle this communication will be
particularly sensitive to associated interference channels.
Through this coupling, interference effects that impact
the availability of data can have cascading effects on the
timing behavior of other tasks and applications.

Limiting data exchange to the end (writing/sending) and
beginning (reading/receiving) of time windows ensures
that the data will be available at the beginning of the next
window with no coupling of timing behavior. This means
that any interference channels exercised by this data
exchange are mitigated as they can no longer impact the
timing behavior of the software.

As well as having a positive impact on performance, this
approach may also make multicore data and control
coupling verification (as required by A(M)C 20-193’s
MCP_Software_2 objective) easier.

Figure 10 – Accessing separate copies of the Math Library in RAM for applications on core 0 and 1 mitigates
interference channels related to shared memory access

Mitigation of interference in Multicore Processors | Page 15

4.2.6 Selecting programming constructs and
standards

It is possible to mitigate some interference channels
by careful selection of programming constructs and
standards used in a project. Examples of this include
restricting the use of shared memory or, for some
niche interference channels, avoiding particular
instructions such as memset or icbi (instruction block
cache invalidate, which is available in some PowerPC®
architectures). The policies that control cache behavior
generally exist to improve average-case performance.
As such, it may be that particular access patterns trigger
policy changes. For example, if the default policy is a write-
back mode, where write accesses from the CPU write the
line into cache and then write it back to main memory,
this generally caters well for quick repeat accesses to the
newly written line.

However, if a lot of memory is written in a single
transaction, this behavior may cause a performance
penalty as the data could more efficiently be written
directly to main memory. In this situation, the cache
policy may automatically change to “read-allocate” mode,
where cache lines are only filled when a read access is
made, and writes instead write directly to main memory.

This cache policy change could have catastrophic
consequences for other cores using the cache, and as
such this is an (Indirect) interference channel that may
need mitigation. Some ways to mitigate this interference
channel include preventing cache policy changes or
restricting the use of software behavior that may trigger
the policy change, such as preventing the use of memset
to write to large contiguous blocks of memory.

4.2.7 Segregating criticality

Naively, many projects approach the migration of single-
core applications to multicore by attempting to separate
applications based on Item Development Assurance
Level (IDAL) on a per-core basis. While this seems sensible
at first as it can maintain any space partitioning applied
to the single-core counterpart, this makes it possible
for applications of lower IDAL to generate interference
that impacts applications of high IDAL on different
cores. This can bring complex devices or functionality,
and associated interference channels utilized by lower
IDAL software into scope for analysis according to
A(M)C 20-193.

It is therefore generally advisable to allocate functionality
relating to different IDALs per time window rather than
per core (Figure 11). Using time partitioning to allocate a
time window per IDAL means that only the interference
channels that relate to the usage domain of the high
criticality application can impact its execution. This can
reduce the scope of required certification activities as it
can be considered a mitigation by design or avoidance of
interference channels.

4.3 Hybrid hardware/software mitigation
approaches

Some approaches to mitigation involve making choices
or using methods in both hardware and software design
and configuration. In these cases, neither hardware nor
software methods alone are sufficient to implement the
mitigation, and tight coupling between the hardware and
software methods is needed to do so.

Some of these methods can be seen as extensions to
the hardware or software mitigation approaches we
discussed previously. The general comments made
previously for both hardware and software-based
mitigations also apply to hybrid mitigations.

Common hybrid hardware/software mitigation
approaches include the following:

•	 Applying space partitioning
•	 Limiting accesses to shared resources
•	 Interrupt and exception handling
•	 Cache coloring

Figure 11 – While it may seem sensible to segregate functionality relating to different criticality per core, it's generally advisable
to segregate criticality per time window instead

Page 16 | Mitigation of interference in Multicore Processors

4.3.1 Applying space partitioning

The extent of multicore interference in the memory
system is related to the concurrent access from tasks
on different cores. Common examples of interference
channels in the memory system include cache snooping
when accessing the same memory page, cache line
eviction and memory controller bandwidth saturation.
Powerful OS platforms such as VxWorks and Helix
Platform can work around this by configuring the MMU
to provide a contiguous view of virtual memory pages
for each task or application, while the physical memory
mapping is set up in a way to partition the memory
resources and mitigate the related interference channels
(Figure 12).

The availability of IOMMU and device virtualization
goes one step further by partitioning accesses from
peripheral devices to the memory system as well, and
system-on-Chip (SoC)-specific partitioning features may
provide similar options for on-chip devices.

4.3.2 Limiting accesses to shared resources

When different applications can make accesses to
shared resources concurrently as well as sequentially,
interference can result, either immediately or when a
threshold is reached. If a particular queue or buffer has a
limited capacity and can only handle a limited throughput
of accesses per second, this can be saturated by requests
from multiple cores.

A memory controller, for example, can only handle a
limited number of concurrent in-flight accesses. If the
number of requests exceeds this number, the accesses
must be serialized with some arbitration.

In the worst case, it could be that these queues and
buffers are entirely saturated, and any further requests
cannot be added.

Limiting accesses to devices or peripherals can mitigate
these interference channels. This can be achieved in
different ways. For example, configuring the MMU or
IOMMU to only allow accesses from a specific application
in each time window (see Applying time partitioning on
page 12) can mitigate interference channels relating to
bandwidth or access serialization. Accesses to or usage
of a resource could also be budgeted for and monitored
using hardware event monitoring units. If done correctly,
this could ensure that thresholds are never exceeded.
However, such mitigations can range in complexity and
required verification effort, and using them can limit the
available functionality considerably.

4.3.3 Interrupt and exception handling

Even when following best practices by using polling instead
of interrupts in a safety-critical system, interrupts will still
be required to implement time-driven events or handle
exceptions on the software level. Multicore interference
occurs when the application that triggers the interrupt or
the fault leading to an exception is running on a different
core such as (1) in Figure 13, where an external device
interrupt is targeted at the application on core 1, but is
delivered to core 0 by the interrupt controller

The OS platform can provide system-level interrupt
management by directing interrupts to the application’s
core with hardware support as in the case of (2) in
Figure 13, and by masking device interrupts when an
application is not scheduled. Time-based events can be
reduced by adopting a tickless OS kernel architecture,
such as that available in Helix Platform.

Another source of multicore interference is less
obvious. When inter-process communication APIs
are used in a multicore system, these can impact the
execution of the destination task. For example, if data
is sent to a task using pipes or message queues, this
is likely to incur an immediate execution time penalty
on the core receiving the communication as shown by
(3) in Figure 13. Processors usually implement
cross-core signaling with low interference through
efficient doorbell or inter processor interrupts (IPI).

Figure 12 – The combination of cache partitioning and the use of certain RAM addresses can mitigate interference in the memory
system through space partitioning.

Mitigation of interference in Multicore Processors | Page 17

However, the complex actions in the API and scheduler
that follow the signaling will increase the load on related
interference channels, and a failed task may flood other
cores with uncontrolled IPI load. Mitigation strategies
include limiting cross-core signaling to predefined time
windows similar to Limiting data exchange to scheduling
boundaries on page 14. However, application developers
may need to consider the lag when communicating
across different cores. The ports and channels of ARINC
653 are a good example for API semantics that can be
used with both polling and IPI-based signaling.

4.3.4 Cache coloring

Cache coloring is a software partitioning method based
on hardware characteristics that can be used to mitigate
concurrent use of shared cache resources by multiple

applications.
With cache coloring, the MMU is configured to map
virtual addresses to physical addresses based on the
relationship between cache lines and memory addresses
(Figure 14). By mapping contiguous memory of an
application to a set of physical memory pages that all end
up in the same cache line of the shared cache, there is no
concurrent cache eviction when other applications are
similarly aligned to different cache lines. This is different
to the cache coloring used for performance-optimized
systems, where the number of cache lines used for each
application is maximized to have the best utilization of
the cache system.

Figure 14 – Mitigation of cache concurrencies by allocating memory for Core 0 and 1 to addresses that are associated with
different cache lines results in “cache-colored” memory usage.

Figure 13 – Interrupts can trigger interference in different ways, as shown by the red boxes for cases (1) and (3).

Page 18 | Mitigation of interference in Multicore Processors

4.4 Implementing mitigations

Mitigation strategies are identified during Platform
Analysis (see page 5). During this analysis, multiple
potential mitigations for an interference channel may
be identified. The mitigation strategies you choose to
use may have implications on the configuration of the
platform, or on the software architecture and design.

It is often easier to implement hardware configuration
changes than software constraints, and mitigation
strategies that involve configuration changes have the
benefit of being verifiable without the software being
available. This allows you to remove interference channels
from the scope of performance verification early in a
project. Strategies that involve making constraints to
the software design, however, may be more robust with
respect to change than those that involve configuration
changes.

In cases where you choose to use a mitigation strategy
and later find, for example, that it cannot be verified, is
too complex, or has too high an overhead, you may need
to explore using other mitigation strategies instead.

The cost of making changes to mitigations that involve
configuration changes may be higher than other
methods, as they may require you to repeat any platform
characterization activities you have done previously (see
Platform Characterization on page 22).

Whether you are applying hardware, software or hybrid
strategies, the OS platform that you use can have a large
impact on the ease of implementing and verifying a
mitigation.

While the hardware mitigations described in Hardware
mitigation approaches on page 9 are all statically
configured or initialized at boot time, A(M)C 20-193
still requires that their status is monitored at runtime,

for example by using safety monitoring software or a
supervisor that prevents modification of the configuration
at runtime.

For mitigations that are implemented within the
software, the complexity of multicore processors and
SoCs with many different internal and external devices
requires a powerful software layer to be able to mitigate
interference using the approaches we discussed above.
State-of-the-art RTOSes such as VxWorks and the
Wind River hypervisor contained in Helix Platform can
provide the necessary features, and with their versatile
configuration options, the most appropriate approaches
can be selected to address the project’s requirements
for safety and performance.

The use of a multi-tiered OS architecture with a
hypervisor and independent guest RTOS kernels
can bring significant benefits when it comes to
implementing interference mitigation approaches.
Multi-tiered architectures offer clearer separation and
increased isolation of applications in a multicore system,
which makes it easier to demonstrate compliance to
A(M)C 20-193 objectives, whereas monolithic multicore
OS kernels tend to carry complex internal data
and control couplings to implement device drivers,
inter-process communication and stacks for networking
or file systems. Implementing applications for a single-
core RTOS or runtime environment, and then using
distinct communication features across different
applications and cores can greatly simplify A(M)C 20-193
verification. The abstraction between using a particular
hardware resource and its functional usage through
architectural standards like such as POSIX®, AUTOSAR
or ARINC 653 is implemented in different layers of
frameworks, RTOS, hypervisor and device drivers. It is
usually opaque how a specific API call on the application
level will exercise interference channels within all of
these layers, but this must be taken into account during
A(M)C 20-193 verification.

Figure 15 – Multi-tiered OS architecture versus monolithic architecture with single multicore OS.

Mitigation of interference in Multicore Processors | Page 19

Common examples include:

•	 The OS platform layers make use of the MMU and
IOMMU to introduce usage of cache and memory
controllers that is different to the application
software view of memory. This happens when the
RTOS maps application memory to different physical
memory areas, and the hypervisor even adds a
second level of indirection, so that interference on
the memory and caches cannot be managed from
the application level.

•	 Usage of filesystem or network communication
stacks can exercise interference channels in a
non-obvious way. While this is directly traceable to
file I/O or socket API calls in the application code, the
mechanics of how the OS and runtime layers maintain
the global state of the filesystem or network stack
across different cores requires detailed analysis with
regard to multicore interference.

•	 Other application APIs are also likely to exercise
interference channels, for example when a
semaphore released by a task on one core causes
cross-core signaling and rescheduling of pending
tasks on different cores, or when pipes and message
queues pass data between cores using shared
memory. In this case, the hardware interference
channel is amplified by the functional interference
due to the runtime internals and control coupling
across cores.

While software is highly configurable, it is critical to
analyze how different configuration settings affect
multicore interference, as well as the overall performance
characteristics of the system. In particular, the use
of software and hybrid mitigations requires intimate
knowledge about the software design and how it utilizes
the underlying hardware.

This challenge can be overcome with pre-verified
toolboxes that already implement various mitigation
strategies, which is exactly what commercial OS
platforms such as VxWorks and Helix Platform provide.
The Wind River approach is to offer commercial
off-the-shelf DO-178C certification evidence data
packages for the OS platform that cover an entire
processor family — such as Armv8-A or Intel® x86 64-bit
— and come with formal guidance on how to integrate with
specific hardware and application software. The design
and integration documentation gives the information
needed to open the black box and perform a full analysis
of how the application’s use of API and external interfaces
will exercise the interference channels.

This out-of-the-box approach solves an important issue
in the design process, as most of the software-related
mitigation strategies have a direct influence on the
design of the application or the system such as splitting
functionality into different time windows or limiting data
exchange between tasks.

Page 20 | Mitigation of interference in Multicore Processors

5.

VERIFYING
MITIGATIONS

Page 20 | Mitigation of interference in Multicore Processors

Mitigation of interference in Multicore Processors | Page 21

After implementing a mitigation, you will
need to verify it to meet A(M)C 20-193’s
MCP_Resource_Usage_3 objective.

Your approach to verifying mitigations should have the
following properties:

•	 It should be reproducible and well defined, and
included in your DO-178C/ED-12C planning
documentation as per A(M)C 20-193’s planning
objectives early in your project. This will support your
DO-178C/ED-12C and A(M)C 20-193 compliance
activities, and reduce rework costs.

•	 It must include a mechanism for measuring the
performance of the system, both when there is
no interference and when there is interference
present on the system. Your approach to measuring
performance will need to be measurement-based
as no computational approach, such as static
or statistical analysis, can effectively model the
performance behavior of multicore computing
platforms. To reduce costs, this approach should also
support analyzing software performance to meet
A(M)C 20-193’s MCP_Software_1 and
MCP_Software_2 objectives.

A sensible approach to verifying the impact of mitigation
to meet the MCP_Resource_Usage_3 objective is to
analyze the impact of each interference channel through
a measurement-based approach, see above, and
determine whether mitigations applied to it are effective.

Many mitigations can be verified at the platform level. That
is, for such mitigations, access to application software
is not required to verify the mitigation. All hardware
mitigations and some software and hybrid mitigations
fall into this category. These mitigations can be verified
early in a DO-178C/ED-12C project, reducing the need
for further verification later in a project. An approach for
this verification is presented in Platform Characterization
on the next page.

Some mitigations, however, can only be verified when
access to the application software is available. Software
mitigations based on software architecture fall into this
category. An approach for this verification is presented in
Software Characterization on page 23.

The software characterization process will need to include
the RTOS and hypervisor layers as well, as compliance to
A(MC) 20-193 needs to be demonstrated for all software.
Using an off-the-shelf OS platform where the vendor
already provides verification results can make software
characterization easier, as described in Operating system
platform verification on page 23.

If any of the mitigations you have applied disable
a resource or feature, it will not be possible to
characterize the corresponding interference channels.

In this case, you should instead register any
configuration settings associated with the deactivation
as critical configuration settings and ensure that the
mitigations are implemented correctly and that they
remain so during execution.

This provides evidence needed to meet the
MCP_Resource_Usage_1 and 2 objectives.

Page 22 | Mitigation of interference in Multicore Processors

5.1 How to verify mitigations at the
platform level (Platform Characterization)

Rapita Systems’ MACH178 solution provides an approach
for generating interference on multicore platforms
through a reproducible mechanism, and measuring
the performance of a multicore system, both with and
without interference present (Figure 16).

•	 RapiDaemons are benchmark applications designed
to target specific interference channels on multicore
platforms. They support the measurement and
generation of interference through a reproducible
approach so that performance metrics to support
A(M)C 20-193 compliance can be collected.

•	 The Rapita Verification Suite (RVS) enables
the creation and execution of performance tests
on a multicore platform to provide evidence for
A(M)C 20-193 compliance. RVS supports running
baseline performance tests on multicore platforms,
and together with RapiDaemons, enables the
generation and execution of tests and collection of
performance results when interference has been
applied on the system. It also provides an automated
export mechanism that allows compliance results
to be generated and re-generated efficiently, and
it supports the collection of performance counters
from hardware event monitoring units (sometimes
called performance monitoring units) on a multicore
platform. These are used as an independent means
to support the analysis and validate results, providing
evidence that RapiDaemons have the expected
behavior on the multicore system and that resource
usage is understood.

These technologies allow performance and mitigations
to be verified through the following process (Figure 17).
For each interference channel:

1.	 First, RapiDaemons that can support the
characterization are selected. This typically includes
a victim RapiDaemon that is sensitive to interference
on a specific interference channel, as well as one or
more RapiDaemons that can generate interference
on a specific interference channel (aggressive
RapiDaemons).

2.	 Then, with mitigations applied, the timing behavior
of the victim RapiDaemon running on one core of
the system is measured while all other cores are idle.
RVS is used to support the generation and execution
of tests and collection and the review of results
from these tests. RapiTest supports the creation
and automated execution of tests, while RapiTime
supports the collection of performance metrics and
analysis and export of results.

3.	 Next, with mitigations still applied, a series of tests is
conducted where a sensitive RapiDaemon is running
on one core as in step 2, and where interference is
applied on one or more of the other cores using
aggressive RapiDaemons. RVS is again used to
support this activity.

4.	 Results are analyzed using RapiTime to determine
whether the interference channel has been mitigated
(there is no observable impact on performance of
the sensitive RapiDaemon between steps 2 and 3)
or not. Results are also exported using RapiTime.

5.	 If you want to understand the impact of applying the
mitigation, steps 2 and 3 can be repeated without
mitigations applied. In some cases, a channel may
have negligible impact on performance even without
mitigation. If you are analyzing the performance
impact of an interference channel that has not been
mitigated, this is the standard procedure.

Platform Characterization allows you to determine
whether your mitigation strategies are effective
at mitigating interference channels. Later in your
A(M)C 20-193 workflow, you will need to provide evidence
that your software meets its requirements while
interference is present (e.g. to meet MCP_Software_1
and MCP_Software_2 objectives.

Figure 16 – MACH178 includes an efficient tool automation workflow to ensure test efficiency, traceability and
reproducibility

Detailed procedures for the Platform Characterization
process are available in MACH178 Foundations,
which also includes template A(M)C 20-193 planning
documents, templates and checklists, and white
papers to support A(M)C 20-193 compliance.

Mitigation of interference in Multicore Processors | Page 23

An advantage of demonstrating that an interference
channel has been mitigated in the way described
here is that it allows you to remove that interference
channel from the scope of these future activities. No
further verification should be required specific to the
interference channel you have mitigated unless factors
that could affect the mitigation, for example critical
configuration settings in the multicore platform, change.

5.2 How to verify mitigations at the
software level (Software Characterization)

Rapita Systems’ MACH178 approach includes a process
for verifying mitigations at the software level, called
Software Characterization. This process uses the same
elements and a similar overall process to the Platform
Characterization process with the following differences:

•	 Performance is measured with the software (rather
than a victim RapiDaemon) running on one core,
with aggressive RapiDaemons running on the other
cores as in Platform Characterization.

•	 The mitigation will need to be reverified if the
software changes.

•	 The resource usage of the software must be
understood to ensure that sufficient resources
are available, therefore the capture of values from
different/additional hardware event monitoring units
may be required for this activity.

For interference channels that have not been mitigated,
the Software Characterization process can also be used
to support MCP_Software_1 and MCP_Software_2
verification activities.

5.3 Operating system platform verification

The challenge of A(M)C 20-193 compliance includes
formal verification and full compliance to the objectives
of DO-178C/ED-12C and A(M)C 20-193 for all software
layers, including RTOS and hypervisor. The Wind River
DO-178C certification evidence data packages for
VxWorks and Helix Platform come with compliance
statements for the multicore certification objectives
that are gathered on reference hardware, along with
guidance on how to achieve full compliance when the
integration with the final hardware and application
software is completed.

On top of this, the unique IBLL (independent build, link
and load) feature in Helix Platform enables the DO-
297/ED-124 role-based model for incremental system
integration and certification. This approach from
Integrated Modular Avionics (IMA) makes it possible to
design and verify a generic combination of hardware
and OS platform with interference mitigations in place,
but without application software. Applications from
different origins are then integrated later and can even
be replaced independently from each other during the
lifetime of the device without having to repeat the full
suite of verification activities. This effectively decouples
the lifecycle of applications and the underlying platform
and powers true reuse in safety-critical multicore
systems.

Detailed procedures for the Software Characterization
process are available in MACH178 Foundations,
which also includes template A(M)C 20-193 planning
documents, templates and checklists, and white
papers to support A(M)C 20-193 compliance.

Figure 17 – MACH178 platform characterization workflow

Page 24 | Mitigation of interference in Multicore Processors

6.

CONCLUSION

The use of multicore processing for
DO-178C/ED-12C avionics is inevitable,
but using multicore processing in
DO-178C/ED-12C software requires
adherence to A(M)C 20-193 guidelines.
Meeting these guidelines requires that
interference and interference channels on the
multicore platform are understood, mitigated
and verified, so efficient approaches to each
of these activities is key to the success of any
project aiming for A(M)C 20-193 certification.

Identifying interference channels and verifying mitigation
are both crucial steps in achieving A(M)C 20-193
compliance. Rapita Systems’ MACH178 solution supports
these activities by providing documentation, tools and
services to identify interference channels on multicore
platforms, generate interference in a reproducible
and automated manner, and verify the performance
of multicore software in interference scenarios. The
solution includes template compliance documents,
processes and checklists that directly cover most of
A(M)C 20-193’s objectives.

VxWorks and Helix Platform are the foundation for
easy implementation of many interference mitigation
strategies and they take full advantage of the features of
modern Arm, Intel and PowerPC processors. Off-the-shelf
DO-178C certification data packages for these solutions
support the verification of multicore interference in
line with A(M)C 20-193 objectives. Clear separation and
isolation with multi-tiered OS platforms help handle
the complexity of multicore interference within the
architecture and can enable independent verification
mitigations before application software integration.

A(M)C 20-193 certification is an iterative process, and it
is unreasonable to expect only a single run-through of
some verification activities. Your choice to apply a specific
mitigation or not, for example, may lead to an impact on
your software performance that requires you to change
this choice later and repeat some verification activities.
Because of this, it is important to drive efficiency at every
stage of the project, as supported by Wind River and
Rapita Systems solutions.

In cases where it isn’t feasible to mitigate all interference
channels while delivering required performance,
certification applicants should consider managing the
impact of interference to improve software reliability
and performance. We intend to address this in a future
paper.

Page 25 | Mitigation of interference in Multicore Processors

Rapita Systems provides on-target software verification tools and services to the embedded
aerospace and automotive electronics industries. Its solutions help to increase software quality,
deliver evidence to meet safety and certification objectives (including DO-178C) and reduce
project costs. With offices in the UK, Spain and US, it serves its solutions globally.

Daniel Wright
Technical Marketing Executive

Daniel Wright’s roles at Rapita Systems include creating and curating technical
marketing content, including collateral, blogs and videos, and capturing and
maintaining data that is used to further develop Rapita’s verification solutions to best
meet the needs of the global aerospace market. Daniel received a PhD in Structural
Biology from the University of York in 2016.

Karl Thyssen
Multicore Analysis Engineer

Karl Thyssen graduated from the University of Heidelberg in Computer Science. After
joining Rapita, he became a Multicore Analysis Engineer who works in the delivery of
customer projects on multicore platforms, specializing in software analysis.

About Rapita Systems

Email: info@rapitasystems.com

LinkedIn: linkedin.com/company/rapita-systems

Find out more: Learn more about multicore software verification and how to meet DO-178C
objectives with a wide range of our webinars and whitepapers. Visit our website for more info.
https://www.rapitasystems.com/resources

Mitigation of interference in Multicore Processors | Page 26

Wind River is accelerating digital transformation across industries by delivering the software
and expertise that enable the development, deployment, operations, and servicing of mission-
critical intelligent systems from the edge to the cloud. Wind River technology is found in billions
of products and is backed by world-class services and support and a broad partner ecosystem.

Olivier Charrier
Functional Safety Specialist

Olivier Charrier is a software engineer who obtained a Master’s degree in Software
Engineering (DESS) from Bordeaux University in 1989. He worked for Alsys/Aonix
before joining Wind River in June 2001 as Senior Field Application Engineer for the
South-western region of Europe dedicated to the Aerospace & Defence Market.
In 2007, he became EMEA Aerospace & Defence Principal Engineer to support
and coordinate EMEA wide A&D programs. Since January 2017, Olivier has been
extending his scope to contribute to other markets, like Railway, Nuclear, Medical and
Automotive, also adding new geo like APAC.

Stefan Harwarth
Specialist Systems Architect

Stefan Harwarth is part of the European Field Application Engineering team working
with customers in the Aerospace & Defense market. His focus is on leveraging Wind
River’s VxWorks RTOS and Helix Virtualization Platform in customer projects, including
certification to safety standards such as DO-178C. Stefan graduated in Computer
Science from the University of the Federal Armed Forces in Munich and spent several
years working in Avionics software development before joining Wind River.

About Wind River

Email: inquiries@windriver.com

LinkedIn: linkedin.com/company/wind-river

Find out more: Browse through white papers, videos, infographics, and more to explore the latest trends
and technology for mission-critical intelligent systems. https://www.windriver.com/resources

Page 27 | Mitigation of interference in Multicore Processors

