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1. 

MULTICORE 
CERTIFICATION IN 
AVIONICS

With the embedded avionics industry’s inevitable 
move towards the use of multicore processors 
for new projects, it is more important than ever 
to understand the certification landscape for 
multicore avionics systems. 

Increased adoption of multicore processors by 
the embedded avionics industry is being driven by 
ever-increasing demands for software functionality, 
improved SWaP (size, weight and power) characteristics, 
and increasing challenges in sourcing high-performance 
single-core processors. While using multicore processors 
for embedded avionics offers many benefits, doing so 
in DO-178C or ED-12C projects requires meeting the 
additional objectives of AC 20-193 (released January 
2024; for DO-178C projects) or AMC 20-193 (released 
January 2022; for ED-12C projects). 

Much of the challenge in meeting A(M)C 20-193 
objectives hinges on understanding and mitigating 
multicore interference and providing evidence that 
the timing deadlines of hosted applications will always 
be met. In this paper, we do a deep dive on identifying 
interference channels, mitigation of interference 
and verification of mitigations as required to meet  
A(M)C 20-193’s MCP_Resource_Usage_3 objective, 
and we show how Wind River® and Rapita Systems 
solutions support this process.  

What is A(M)C 20-193?

A(M)C 20-193 guidance is a joint effort by the European 
Union Aviation Safety Agency (EASA) and Federal 
Aviation Assiociation (FAA).

It provides an acceptable means of compliance for 
showing that multicore processors (MCPs) used in 
airborne systems and equipment meet the necessary 
airworthiness specifications. This document is crucial 
for ensuring that MCPs, which are processors with 
multiple cores, operate safely and reliably in aviation 
environments.
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Multicore interference is the cornerstone of 
A(M)C 20-193 compliance. Interference can be 
caused by different cores in a multicore processor 
taking actions that interact with each other. 
This could include accesses to the same shared 
resource, synchronization events, coherency 
mechanisms and even thermal behavior.

The impact of interference ranges from no noticeable 
effect to impacts on the execution behavior of hosted 
software, including properties such as average and  
worst-case execution time (WCET), predictability of timing 
behavior, and data coupling and control coupling. 

Interference can originate from various sources 
on a multicore processor. A(M)C 20-193 call these 
“interference channels”, and define an interference 
channel as “a platform property that may cause 
interference between software applications or tasks.” 
Many different interference channels exist. These can 
come from multicore processors or peripheral devices 
on a platform. Multicore platforms tend to have more 
interference channels than you may first expect. 
Some of these are obvious sources of interference 
that can be easily identified from analysis of reference 
documentation (see Platform Analysis on page 5), while 
others are less obvious and may only be identified during 
testing (see Platform Characterization on page 22).  

For discussion purposes, and as an aid to understanding 
where interference channels may come from and how 
they can be discovered, it can be helpful to categorize 
interference channels based on their properties. 
Throughout this paper, we will categorize interference 
channels as either Direct or Indirect.

Direct interference channels involve direct 
competition for resources between tasks or applications 
running on different cores. A common example of this 
is multiple cores sharing a cache, for example L2 cache, 
where one core can invalidate cache lines written by 
another core. This can cause cache misses, which have 
a performance penalty. We go into more detail on this 
example in Identifying interference channels: Examples on 
page 6. For a skilled engineer, many Direct interference 
channels can be intuitively discovered from a high-level 
understanding of the multicore platform and related 
devices. Analysis of technical reference documentation 
is needed to support this discovery and understand the 
technical definitions of the interference channel.  

Indirect interference channels arise where hardware 
unpredictability can impact software behavior. This may 
be due to priorities or mode changes in hardware such 
as events triggering a cache policy change, or traffic 
triggering a routing change. An example of the latter 
arises when interconnect routing can depend according 
to traffic. On a ring buffer where multiple cores and 
devices are attached, there will be a shortest route 
between a given core and a device. If that route already 
has a lot of traffic, however, the system may reroute 
additional traffic to a different route, which may have a 
greater latency and more variability in execution time 
(Figure 1). Indirect interference channels are often more 
challenging to discover than Direct ones, and identifying 
them may require a more detailed understanding of 
the components in a multicore platform or devices and 
how they interact with each other. Analysis of technical 
reference documentation should support this discovery. 

Figure 1 – Example of an indirect interference channel caused by contention for resources on a ring buffer. Due to accesses 
from Core 0 to Resource A, Core 1 is rerouted to take the shortest alternative route to access Resource D.
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Identifying interference channels is a key activity 
in A(M)C 20-193 projects.

Interference is a central consideration in most  
A(M)C objectives, and objective MCP_Resource_
Usage_3 specifically asks a certification applicant to 
demonstrate that interference channels on a platform 
have been identified, and that any mitigations applied 
to those channels have been verified; see Verifying 
mitigations on page 20.  

As the interference channels on a platform can have 
large effects on software performance and required 
verification effort, it is important to identify them as 
early as possible during an A(M)C 20-193 project. This 
is also important due to the scale of required activities – 
multicore platforms may include many more interference 
channels than you first think, with a typical platform having 
around 20-250 channels, depending on its complexity.  
Some of these may be easy to discover, while it may be 
more challenging to discover others (Figure 2).

The hardware that is used in an A(M)C 20-193 project 
can have a huge impact on the interference channels in 
effect on a platform, on the impact of those interference 
channels, and on the required verification effort. 
Because of this, it makes sense to evaluate different 
platforms before embarking on formal activities in an 
A(M)C 20-193 project. Key elements of a platform that 
should be understood during such an evaluation include 
visibility of system interrupts and context switches, 
mitigation strategies (see Mitigating interference channels 
on page 8), and the availability of hardware event 
monitoring units (see Platform Characterization on page 
22).  

In this chapter, we will cover how you can identify 
interference channels (next section), present some 
examples of doing so (page 6), and briefly discuss what 
comes next (page 7).

3.1 How to identify interference channels 
(Platform Analysis)

If you are aiming for A(M)C 20-193 certification, then 
you should use a reproducible and well-defined 
process to identify interference channels on a platform. 
This process should be defined and included in your 
DO-178C/ED-12C planning documentation as per  
A(M)C 20-193’s planning objectives.  

Identification of interference channels requires a deep 
understanding of every component of a multicore 
platform. This can only be gained through analysis of 
detailed technical documentation about the behavior 
of a multicore processor and devices. To support  
A(M)C 20-193 compliance, you should ensure that this 
information is available and in sufficient detail for every 
element of the platform you intend to use.  

Rapita Systems have identified interference channels 
on a range of multicore platforms with different 
processors and devices. Rapita identifies interference 
channels as part of Platform Analysis activities in Rapita’s 
MACH178 solution, which provides support for meeting  
A(M)C 20-193 objectives. MACH178 includes processes 
that define how the analysis is performed, and 
templates to support writing DO-178C/ED-12C planning  
documents, including the Software Verification Plan. 

The analysis involves first identifying hardware resources 
present on the platform, and then identifying and 
documenting the platform properties that can cause 
interference (interference channels) on each resource, 
as well as relevant information about those channels. 
This documentation includes a description of how each 
interference channel can cause interference between 
different applications or tasks, configuration settings that 
may affect each channel, references to the sources of 
information from which each interference channel was 
identified, and potential mitigations of each interference 
channel that have been identified during the analysis 
(see Mitigating interference channels on page 8). 

In the previous chapter, we introduced terminology to 
categorize interference channels as being either Direct 
or Indirect to understand where interference channels 
come from and how they are discovered. For most 
multicore platforms, during an initial analysis, a range 
of Direct and Indirect interference channels will be 
identified and documented. Platforms are likely to have 
interference channels that can’t be identified from an 
initial analysis, and which can only be discovered during 
verification and characterization of other interference 
channels (see Platform Characterization on page 22). 
When these are discovered, they are analyzed and 
documented.  

Figure 2 – Multicore platforms may have many more 
interference channels than you first think, and some may be 

difficult to discover.
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Figure 3 – A quad core system with private L1 and shared L2 caches. Example Interference Channels 1 and 2 may be present in 
the L2 Cache whilst the Example 3 can exist in the L1 caches, despite the fact that they are private.

3.2 Identifying interference channels: 
Examples 

As an illustration of identifying interference channels, 
consider a hypothetical quad-core system with two levels 
of cache: L1, which is private to each core, and L2, which 
is shared by all cores (Figure 3). The L2 cache in the 
system is accessed using an interconnect shared by all 
cores through a shared cache controller. Many multicore 
processors share properties with this hypothetical 
system.   
  
To identify interference channels on the platform, we 
need to understand in detail how our platform works by 
analyzing the technical documentation that describes 
the functionality of the cache. The following are just a few 
examples of possible interference channels relating to 
the cache architecture in this hypothetical system.  

Example I: Invalidation of cache lines

One interference channel we may identify on our 
platform is the invalidation of cache lines by other cores. 
Interference can result when one core places data in a 
cache line and another core replaces that data. Unable 
to retrieve cached data from the L2 cache as it has 
been replaced, the first core will need to access higher 
levels of the memory hierarchy to retrieve the data, 
and this comes with a performance penalty. This is a 
common interference channel associated with the cache 
architecture in our example.  

Example II: Cache controller requests

A less obvious example relates to cache controllers, 
which manage the requests being made to a cache. 
Cache controllers receive requests from cores, 

such as data linefills, instruction linefills, reads, and 
non-cacheable reads. 
A cache controller is only able to service a limited number 
of simultaneous in-flight requests at once depending on 
its architecture and complexity. When multiple requests 
are made concurrently by multiple cores, a controller 
must serialize these operations. If sufficient requests 
are made, the queues and buffers that perform this 
serialization may become full, leading to new requests 
not being accepted. As this example involves direct 
contention for a resource (the cache controller), we’d 
class it as a Direct interference channel, but it is one that 
might not be identified from a preliminary analysis of 
interference channels.  

Example III : Cache coherency protocols

Taking a step down into the L1 cache, which is private to 
each core in our example, you might assume that there 
is no sharing of a resource, so no interference channels 
are present. However, a cache line may be shared 
between multiple L1 caches. If data is changed in one 
cache, it must be ensured that this change is broadcast 
to the other cores to ensure that no stale data is used. To 
support this, many platforms include cache coherency 
protocols (snoops) that are broadcast to other cores, 
allowing them to check whether the address of the 
modified data is also present in their private L1 cache. 
If the same address is present, it must be invalidated 
to ensure coherency, forcing the local core intending to 
use it to first access L2, which is associated with a higher 
latency. This is an example of an Indirect interference 
channel where performance can be affected not by 
direct contention for a resource, but by an indirect effect 
of the multicore architecture. 
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Examples 1 and 2 are Direct channels, while Example 
3 is an Indirect channel using our definitions (see 
Interference and interference channels on page 2). For a 
given multicore platform, it may be possible to identify 
interference channels like this through analysis of 
reference documentation alone. On a real multicore 
platform, there would be many more Direct and Indirect 
channels that could be discovered from this type of 
analysis.  

Real platforms will likely have channels that can’t be 
detected through analysis alone, and which can only be 
discovered during testing (see Platform Characterization 
on page 22). At Rapita Systems, we have yet to encounter a 
multicore platform where no such interference channels 
were found. Examples of interference channels that can 
only be discovered through testing range in complexity 
from incorrect configuration register definitions to 
unintended features. One example of the latter that has 
been discovered by Rapita Systems is asymmetric bus 
arbitration on an old, widely-used multicore processor. 
On this processor, when all cores make accesses to 
saturate the bandwidth of the bus, core 0 will be treated 
preferentially, and this behavior can affect interference.  

3.3 What comes next?

After you have identified the interference channels on 
a platform, there are two main approaches to achieving 
A(M)C 20-193 objectives. 

The ideal approach is to find and implement 
a means to mitigate the interference channel 
and verify the mitigation according to 
A(M)C 20-193’s MCP_Resource_Usage_3 objective. 
For the purposes of this paper, and in alignment with 
A(M)C 20-193, we define an interference channel as 
having been mitigated if there is no observable impact 

from the channel on performance of the multicore 
system. 

We will look at different approaches for mitigating 
interference channels in Mitigating interference channels 
on page 8, and at how mitigations can be verified in 
Verifying mitigations on page 20.  

It is not always possible to mitigate an interference 
channel. Shared access to devices will almost always 
be required, including access to devices that cannot be 
partitioned easily on the hardware level, such as network 
interfaces. In these cases, interference can be managed 
through configuration or design to have better control 
over the level of actual interference at runtime. While 
this will not negate the need to verify the software’s 
performance, it will allow the impact of the interference 
channel on performance to be minimized, making it 
more likely that the software will meet its performance 
requirements. This complex topic, falls out of the scope 
of this paper and may be discussed in a future paper. 

If you have not mitigated an interference channel, 
then you will need to verify the software’s timing 
behavior and data coupling and control coupling 
with respect to that interference channel to meet 
A(M)C 20-193 objectives MCP_Software_1 and 
MCP_Software_2.  

Mitigating a channel and verifying the mitigation is 
the preferable approach to take as, in addition to 
negating the impact of the interference channel on 
performance and making the system more reliable, 
it also negates the need for additional verification  
to meet A(M)C 20-193’s MCP_Software_1 and 
MCP_Software_2 objectives, therefore reducing the 
overall verification effort.
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Mitigating interference channels is crucial in 
the development of DO-178C/ED-12C multicore 
software. Mitigation is necessary to improve 
worst-case performance and reliability of 
the software, and it allows an applicant to 
reduce the scope of activities required to  
meet A(M)C 20-193’s MCP_Software_1 and  
MCP_Software_2 objectives.

The importance of mitigation should not be understated. 
Multicore projects are complex, and the verification 
activities required to meet A(M)C 20-193 objectives are 
expensive. The more that the performance and reliability 
of the software can be improved, and its verification 
simplified, the better. 

There are different approaches to mitigating interference 
channels, and these can broadly be grouped into the 
following approaches: 

•	 Hardware-based approaches – These are based 
on hardware capabilities and design. They may 
be configured in hardware, but they are often 
configured during initialization by a layer in the 
platform software, such as an RTOS or bootloader. 
Generally, these approaches are easier to implement 
than software and hybrid approaches, and they are 
more frequently used. 

•	 Software-based approaches – These are based 
on the way the software is architected and designed, 
compiled and linked. This can also include the use 
of specific mitigation code that operates during 
runtime. 

•	 Hybrid hardware/software approaches – 
These include elements of both hardware and  
software-based approaches.  

All mitigations come with some trade-offs; usually, 
a sacrifice of average-case performance is needed 
to achieve better predictability and improved  
worst-case performance. Some mitigations may also 
impact the complexity of software, such as cache/
bandwidth partitioning implementations or applying 
constraints on software architecture. When you first 
choose which mitigations to apply, you may choose to 
avoid these mitigations due to their expected impact on  
average-case performance. 

If, during analysis of your software performance, you 
find that your software is particularly sensitive to a 
related interference channel, or if your software fails to 
meet its timing deadlines, you may choose to apply a 
mitigation that you had previously chosen not to use. As 
a result, you’ll need to repeat some verification activities. 

Because of this, automation, traceability, and applying a 
well-defined and repeatable procedure is essential for 
efficiency. We cover this further in Verifying mitigations 
on page 21.

In the upcoming sections, we will share examples of 
approaches for mitigating interference based on the 
categories listed above.  

Then, later in the chapter (page 18), we will discuss 
considerations for implementing mitigations, including 
the pros and cons of different approaches, and how 
much rework should be expected when selecting and 
verifying mitigations. 

4.1 Hardware mitigation approaches

Some approaches to mitigating interference channels 
can broadly be categorized as being related to the 
hardware and its configuration and driven by the 
hardware design. These approaches are discovered 
during Platform Analysis along with other mitigation 
strategies (see Platform Analysis on page 22). 

Common hardware mitigation approaches include the 
following: 

•	 Disabling cores 
•	 Disabling devices or features 
•	 Avoiding the use of complex devices 
•	 Hardware partitioning of shared resources 

Some of these approaches have trade-offs. For example, 
applying an approach may be helpful for mitigating 
interference channels, but this may come at the 
expense of affecting average-case performance, the 
ease of analyzing interference channels, predictability in 
performance, or complexity. 

For the purposes of this paper, an interference 
channel is defined as having been mitigated if there 
is no observable impact from the channel on the 
performance of a multicore system.
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4.1.1 Disabling cores

One approach you may consider to mitigate interference 
channels is to deactivate all but one core of a multicore 
processor to make it behave almost like a single-core 
processor (Figure 4).  

You may assume that disabling all but one core will 
automatically mean that you no longer need to follow 
A(M)C 20-193 guidance, but this is not necessarily the 
case, and additional activities will always be required 
even if this strategy is used.  

For example, if cores are disabled by hardware 
configuration settings, you will need to provide evidence 
that the cores are disabled and will remain so during 
operation, for example in the case of a single event 
upset, as per A(M)C 20-193’s planning objectives, which 
provide guidance on deactivating cores. 

Note that there are many other approaches to disabling 
cores. Some of these may eliminate or reduce your 
obligations for A(M)C 20-193 compliance, while others 
will not. Your approach to disabling cores should be 
discussed with your certification authority to determine 
the extent to which A(M)C 20-193 objectives apply to 
your project. 

4.1.2  Disabling devices or features

If a device (such as a level of the memory hierarchy or 
a peripheral) or feature (such as cache stashing) is not 
needed, then disabling it can be an effective way of 
mitigating interference channels (Figure 5). This can be 
especially helpful where a device or feature has many 
associated interference channels.  

Selecting which devices or features to disable depends 
on the architecture and functionality – not only of 
the device itself, but also of the platform. Disabling a 
level of cache such as L2, for example, will mitigate all 
interference channels associated with it, but it will also 
cause all accesses that would otherwise hit L2 to access 
main memory instead. This might have a pathological 
impact on interference channels associated with the 
buses or interconnects between L2 and main memory, 
as well as those associated with main memory.

The efficacy of trade-offs of performance for analyzability 
and complexity for this mitigation therefore depend 
entirely on the use case. If you are not going to use a 
feature, disabling it comes with no trade-off.

For example, if you are not going to use cache stashing, 
which allows cores or devices to preload the cache 
with data it “may” later need, you might as well disable 
the feature to reduce the scope of analysis activities 
associated with meeting A(M)C 20-193’s software 
objectives. 

Note that disabling a device or feature does not 
eliminate the need to perform verification activities, 
but it changes the activities that must be performed. 
A(M)C 20-193 requires evidence to be provided that 
disabled devices or features are disabled and will 
remain so during operation. These verification activities, 
however, require much less effort than those needed to 
analyze and characterize interference channels and their 
impact on hosted software.  

Figure 4 – Deactivating all but one core of a multicore 
platform can avoid the need to meet A(M)C 20-193 objectives 

entirely, depending on the method of deactivation.

Figure 5 – Deactivating devices or features can mitigate all 
interference channels associated with them.

Disabling cores

Disabling cores for multicore processors and what 
that means for A(M)C 20-193 compliance is a complex 
topic.

Rapita Systems have developed a White Paper 
dedicated to this.

For more information, contact Rapita Systems.
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4.1.3 Avoiding the use of complex devices

In some cases, required functionality can be achieved 
through the use of simpler or more complex devices 
(Figure 6), and using a less complex device may help  
mitigate interference.

For example, rather than using deeply embedded on-chip 
peripherals with many interference channels, you may  
instead opt to use off-chip (I2C, SPI, PCIe etc.) peripherals 
with fewer potential interference channels.

As every interference channel adds additional  
A(M)C 20-193 activities, simplifying a system in terms 
of interference channel analysis will help reduce effort 
required for certification of the software, though it may 
increase effort required for certification of the hardware 
(DO-254).  

4.1.4  Hardware partitioning of shared resources

For many interference channels related to direct contention 
on shared resources such as a cache, main memory, 
or bandwidth, the simplest approach to mitigating the 
interference channels is to partition the resources. 

Hardware partitioning is a technique whereby isolated 
access is enforced on non-overlapping parts of a resource. 
This usually includes the isolation of faults within each 
part and can reduce verification effort. Using the L2 cache 
as an example, this partitioning mechanism can mitigate 
interference channels associated with cache misses due 
to direct contention for cache lines from multiple cores 
(Figure 7). 

Different partitioning methods have different performance 
and complexity implications. Applying this partitioning 
mechanism to the L2 cache would not necessarily mitigate 
all interference channels associated with the L2 cache, 
as there may be many other interference channels not 
related to direct cache line contention. Examples of this 
include internal buffers and queues that hold the lines 
being accessed. It may be possible to partition these, often 
through way partitioning, or it may not be possible due to 
lack of accessibility, customizability or even visibility. 

Figure 6 – A complex device will often have a greater number of interference channels associated with it than a simple one.  
Replacing a complex device with a simpler off-chip one mitigates all interference channels associated with it and thereby simplifies 

the effort required to meet A(M)C 20-193.

Figure 7 – Partitioning shared resources can mitigate interference channels; in this example, the L2 cache has been partitioned, 
preventing cores from evicting the data of other cores.



Page 12 | Mitigation of interference in Multicore Processors

4.2 Software mitigation approaches

Some approaches to mitigating interference channels 
can broadly be categorized as being based only on the 
software that executes during runtime. This can include 
the definition of a particular software architecture; 
the choice of programming constructs, standards or 
scheduling; or the implementation of a specific runtime 
behavior.  

Before you begin to design and write software, it is 
important to consider the interference channels that 
may be present on the system (as identified by Platform 
Analysis, see page 5), and which of these you will mitigate 
by software approaches and how. After all, changing the 
software design, code or integration later in a project can 
be expensive.  

Common software mitigation approaches include the 
following: 
•	 Applying time partitioning 
•	 Restricting resource usage to only one execution 

context 
•	 Using a client/server architecture 
•	 Avoiding the use of shared memory 
•	 Limiting data exchange to scheduling boundaries 
•	 Selecting programming constructs and standards  
•	 Segregating criticality 

As in A(M)C 20-193, the term application is used in 
this document to describe a software component 
that implements a set of functionality and that can 
be integrated into the system and executed without 
depending on other applications. When executing an 
application in the context of an operating system (OS) 
platform with a protected address space, the term 
process is often used, but bare-metal software or 
virtual machines in a hypervisor can equally be seen as 
applications according to this definition.  

The term task when used in this document describes 
a single thread of execution flow within an application 
that can be scheduled to run on one of the cores of a 
multicore system. Applications can have one or more 
tasks, and these can all run on the same core, or on 
different cores. 

4.2.1  Applying time partitioning

Time partitioning is a technique with which software 
applications are isolated so that each application 
has no impact on the timing performance of another 
application.  This is exceptionally challenging to 
implement in a multicore system due to the coupling 
effect of interference. Concurrent applications are 
coupled through the interference they generate and 
are sensitive to, even if there are no functional data or 
control dependencies within the software itself.  

“Robust time partitioning” is referenced throughout 
the A(M)C 20-193 objectives and highlighted in the  
MCP_Software_2 objective. A(M)C 20-193 assert 
that robust time partitioning would be achieved if no 
interference channels can cause applications to consume 
more than their allocated time resources (see box below 
for the full definition). To guarantee this for a system, 
it would be necessary to mitigate every interference 
channel such that there are no interference channels 
active across the entire platform. This is impossible to 
do in practice.  

Applying time partitioning can still, however, have many 
merits when it comes to mitigating interference channels. 
Allowing only a single task to use a particular shared 
resource during a defined amount of time can mitigate 
potential interference from shared accesses.  

Full A(M)C 20-193 definition for robust time 
partitioning

Both AC 20-193 and AMC 20-193 state: 

“Robust time partitioning (on an MCP): this is achieved 
when, as a result of mitigating the time interference 
between partitions hosted on different cores, no 
software partition consumes more than its allocation 
of execution time on the core(s) on which it executes, 
irrespective of whether partitions are executing on 
none of the other active cores or on one, more than 
one, or all of the other active cores.” 

Figure 8 – Restricting the execution time of tasks to time windows can mitigate interference channel
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For example, for software with multiple tasks with heavy 
access patterns to main memory, time partitioning could 
be applied by scheduling these tasks in separate time 
slices to avoid concurrent accesses (Figure 8). This 
mitigation requires a timing event to trigger the start 
and stop of the thread. This timing event may make use 
of a shared resource that could exercise one or more 
interference channels.  Additionally, you can architect 
your software to make time partitioning more effective 
by splitting functionality that accesses multiple resources 
into more granular tasks, each of which accesses fewer 
resources. For example, if you have a software component 
that performs read, process and write functionality, 
you could split this into three tasks, each with its own 
resource access profile. This makes it easier to time slice 
the software to take account of resource usage patterns. 
Time partitioning is typically implemented by allocating 
periodic time windows during which a particular task or 
application is executed.  

While time partitioning can be an effective mitigation 
strategy, it constrains the scheduling and/or software 
architecture. Applying time partitioning to minimize 
concurrent use of shared resources requires a method of 
synchronization across cores. Implementing this by hand 
for a project can be expensive, but it is usually available 
out of the box in OS platforms such as  VxWorks® and 
Helix™ Virtualization Platform. 

4.2.2  Restricting resource usage to only one 
execution context

In cases in which interference channels are related to 
just one resource, restricting access to this resource to 
only a single task on a specific core can be an effective 
mitigation. Implementing this mitigation can require 
different activities during software architecture, design, 
implementation, or verification to ensure that the 
resource is only used by one task on one core. 

Some of the following mitigations such as Using a client/
server architecture  below and Applying space partitioning 
on page 16 can support this mitigation approach by 
controlling access to a restricted resource by other tasks, 
or guaranteeing exclusive access through hardware 
protection. While this can be an effective mitigation, 
the challenge of using the approach is in identifying the 
resources and interference channels on which it can be 
applied. 

4.2.3  Using a client/server architecture

It may be that the hardware operations that govern 
the mediation and serialization of accesses to a given 
resource are poorly or not at all documented, making 
them difficult to characterize or mitigate. Using a  
client/server model in your software architecture to 
mediate and serialize accesses to resources, thereby 
avoiding any hardware mechanisms with associated 
interference channels, mitigates interference from 
access serialization (Figure 9). 

You may, for example, implement a storage server 
application that mediates and serializes accesses to 
non-volatile memory (NVM) for all applications. This 
form of software-mediated access to shared devices lets 
you tightly define how serialization occurs rather than 
leaving it at the mercy of hardware, and it can mitigate 
interference.  While this mitigation can avoid the use of 
hardware features that are difficult to analyze, using it will 
often come at the expense of increasing the complexity 
of the software architecture.  

Figure 10 – Client/server architecture mediates and serializes accesses to resources. This avoids any hardware mechanisms with 
associated interference channels.
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4.2.4 Avoiding the use of shared memory

Accessing the same memory pages from tasks on 
different cores concurrently is a source of interference 
analogous to some of those discussed previously. This 
can be mitigated by software design, for example by 
setting up separate copies of the OS components and 
libraries for each core, or by preventing allocation of 
the same memory pages from tasks on different cores 
(Figure 10). 

However, exchanging data between, or synchronizing 
tasks on different cores typically requires memory 
pages to be shared or copied between cores, which can 
exercise interference channels. Restrictions on the API 
for data exchange can be used as a mitigation on the 
software level, including limiting data exchange to certain 
time windows as described in Limiting data exchanged to 
scheduling boundaries (right).   

It is also possible to apply hardware-based mechanisms 
to add a protection level (e.g. the MMU or IOMMU). 
This hybrid approach can help support verification and 
validation activities and is described in Applying space 
partitioning on page 16. 

4.2.5 Limiting data exchange to scheduling 
boundaries

Limiting data exchange between tasks to occur only 
at scheduling boundaries can mitigate interference. If 
multiple tasks execute concurrently with a high degree 
of coupling through communication or shared data, 
the sections that handle this communication will be 
particularly sensitive to associated interference channels. 
Through this coupling, interference effects that impact 
the availability of data can have cascading effects on the 
timing behavior of other tasks and applications.  

Limiting data exchange to the end (writing/sending) and 
beginning (reading/receiving) of time windows ensures 
that the data will be available at the beginning of the next 
window with no coupling of timing behavior. This means 
that any interference channels exercised by this data 
exchange are mitigated as they can no longer impact the 
timing behavior of the software.  

As well as having a positive impact on performance, this 
approach may also make multicore data and control 
coupling verification (as required by A(M)C 20-193’s 
MCP_Software_2 objective) easier. 

Figure 10 – Accessing separate copies of the Math Library in RAM for applications on core 0 and 1 mitigates  
interference channels related to shared memory access
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4.2.6  Selecting programming constructs and 
standards

It is possible to mitigate some interference channels 
by careful selection of programming constructs and 
standards used in a project. Examples of this include 
restricting the use of shared memory or, for some 
niche interference channels, avoiding particular 
instructions such as memset or icbi (instruction block 
cache invalidate, which is available in some PowerPC® 
architectures).  The policies that control cache behavior 
generally exist to improve average-case performance. 
As such, it may be that particular access patterns trigger 
policy changes. For example, if the default policy is a write-
back mode, where write accesses from the CPU write the 
line into cache and then write it back to main memory, 
this generally caters well for quick repeat accesses to the 
newly written line.  

However, if a lot of memory is written in a single 
transaction, this behavior may cause a performance 
penalty as the data could more efficiently be written 
directly to main memory. In this situation, the cache 
policy may automatically change to “read-allocate” mode, 
where cache lines are only filled when a read access is 
made, and writes instead write directly to main memory.  

This cache policy change could have catastrophic 
consequences for other cores using the cache, and as 
such this is an (Indirect) interference channel that may 
need mitigation. Some ways to mitigate this interference 
channel include preventing cache policy changes or 
restricting the use of software behavior that may trigger 
the policy change, such as preventing the use of memset 
to write to large contiguous blocks of memory. 

4.2.7  Segregating criticality

Naively, many projects approach the migration of single-
core applications to multicore by attempting to separate 
applications based on Item Development Assurance 
Level (IDAL) on a per-core basis. While this seems sensible 
at first as it can maintain any space partitioning applied 
to the single-core counterpart, this makes it possible 
for applications of lower IDAL to generate interference 
that impacts applications of high IDAL on different 
cores. This can bring complex devices or functionality, 
and associated interference channels utilized by lower 
IDAL software into scope for analysis according to  
A(M)C 20-193. 

It is therefore generally advisable to allocate functionality 
relating to different IDALs per time window rather than 
per core (Figure 11). Using time partitioning to allocate a 
time window per IDAL means that only the interference 
channels that relate to the usage domain of the high 
criticality application can impact its execution. This can 
reduce the scope of required certification activities as it 
can be considered a mitigation by design or avoidance of 
interference channels. 

4.3 Hybrid hardware/software mitigation 
approaches

Some approaches to mitigation involve making choices 
or using methods in both hardware and software design 
and configuration. In these cases, neither hardware nor 
software methods alone are sufficient to implement the 
mitigation, and tight coupling between the hardware and 
software methods is needed to do so.  

Some of these methods can be seen as extensions to 
the hardware or software mitigation approaches we 
discussed previously. The general comments made 
previously for both hardware and software-based 
mitigations also apply to hybrid mitigations.  

Common hybrid hardware/software mitigation 
approaches include the following:

•	 Applying space partitioning 
•	 Limiting accesses to shared resources 
•	 Interrupt and exception handling 
•	 Cache coloring

Figure 11 – While it may seem sensible to segregate functionality relating to different criticality per core, it's generally advisable 
to segregate criticality per time window instead
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4.3.1  Applying space partitioning

The extent of multicore interference in the memory 
system is related to the concurrent access from tasks 
on different cores. Common examples of interference 
channels in the memory system include cache snooping 
when accessing the same memory page, cache line 
eviction and memory controller bandwidth saturation. 
Powerful OS platforms such as VxWorks and Helix 
Platform can work around this by configuring the MMU 
to provide a contiguous view of virtual memory pages 
for each task or application, while the physical memory 
mapping is set up in a way to partition the memory 
resources and mitigate the related interference channels 
(Figure 12).  

The availability of IOMMU and device virtualization 
goes one step further by partitioning accesses from 
peripheral devices to the memory system as well, and  
system-on-Chip (SoC)-specific partitioning features may 
provide similar options for on-chip devices. 

4.3.2   Limiting accesses to shared resources

When different applications can make accesses to 
shared resources concurrently as well as sequentially, 
interference can result, either immediately or when a 
threshold is reached. If a particular queue or buffer has a 
limited capacity and can only handle a limited throughput 
of accesses per second, this can be saturated by requests 
from multiple cores. 

A memory controller, for example, can only handle a 
limited number of concurrent in-flight accesses. If the 
number of requests exceeds this number, the accesses 
must be serialized with some arbitration. 

In the worst case, it could be that these queues and 
buffers are entirely saturated, and any further requests 
cannot be added.  

Limiting accesses to devices or peripherals can mitigate 
these interference channels. This can be achieved in 
different ways. For example, configuring the MMU or 
IOMMU to only allow accesses from a specific application 
in each time window (see Applying time partitioning on 
page 12) can mitigate interference channels relating to 
bandwidth or access serialization. Accesses to or usage 
of a resource could also be budgeted for and monitored 
using hardware event monitoring units. If done correctly, 
this could ensure that thresholds are never exceeded. 
However, such mitigations can range in complexity and 
required verification effort, and using them can limit the 
available functionality considerably.  

4.3.3 Interrupt and exception handling

Even when following best practices by using polling instead 
of interrupts in a safety-critical system, interrupts will still 
be required to implement time-driven events or handle 
exceptions on the software level. Multicore interference 
occurs when the application that triggers the interrupt or 
the fault leading to an exception is running on a different 
core such as (1) in Figure 13, where an external device 
interrupt is targeted at the application on core 1, but is 
delivered to core 0 by the interrupt controller

The OS platform can provide system-level interrupt 
management by directing interrupts to the application’s 
core with hardware support as in the case of (2) in 
Figure 13, and by masking device interrupts when an 
application is not scheduled. Time-based events can be 
reduced by adopting a tickless OS kernel architecture, 
such as that available in Helix Platform.  

Another source of multicore interference is less 
obvious. When inter-process communication APIs 
are used in a multicore system, these can impact the 
execution of the destination task. For example, if data 
is sent to a task using pipes or message queues, this 
is likely to incur an immediate execution time penalty 
on the core receiving the communication as shown by  
(3) in Figure 13. Processors usually implement  
cross-core signaling with low interference through 
efficient doorbell or inter processor interrupts (IPI). 

Figure 12 – The combination of cache partitioning and the use of certain RAM addresses can mitigate interference in the memory 
system through space partitioning.
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However, the complex actions in the API and scheduler 
that follow the signaling will increase the load on related 
interference channels, and a failed task may flood other 
cores with uncontrolled IPI load. Mitigation strategies 
include limiting cross-core signaling to predefined time 
windows similar to Limiting data exchange to scheduling 
boundaries on page 14. However, application developers 
may need to consider the lag when communicating 
across different cores. The ports and channels of ARINC 
653 are a good example for API semantics that can be 
used with both polling and IPI-based signaling. 

4.3.4 Cache coloring

Cache coloring is a software partitioning method based 
on hardware characteristics that can be used to mitigate 
concurrent use of shared cache resources by multiple 

applications.  
With cache coloring, the MMU is configured to map 
virtual addresses to physical addresses based on the 
relationship between cache lines and memory addresses 
(Figure 14). By mapping contiguous memory of an 
application to a set of physical memory pages that all end 
up in the same cache line of the shared cache, there is no 
concurrent cache eviction when other applications are 
similarly aligned to different cache lines. This is different 
to the cache coloring used for performance-optimized 
systems, where the number of cache lines used for each 
application is maximized to have the best utilization of 
the cache system. 

Figure 14 – Mitigation of cache concurrencies by allocating memory for Core 0 and 1 to addresses that are associated with 
different cache lines results in “cache-colored” memory usage.

Figure 13 – Interrupts can trigger interference in different ways, as shown by the red boxes for cases (1) and (3).
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4.4 Implementing mitigations

Mitigation strategies are identified during Platform 
Analysis (see page 5). During this analysis, multiple 
potential mitigations for an interference channel may 
be identified. The mitigation strategies you choose to 
use may have implications on the configuration of the 
platform, or on the software architecture and design.  

It is often easier to implement hardware configuration 
changes than software constraints, and mitigation 
strategies that involve configuration changes have the 
benefit of being verifiable without the software being 
available. This allows you to remove interference channels 
from the scope of performance verification early in a 
project. Strategies that involve making constraints to 
the software design, however, may be more robust with 
respect to change than those that involve configuration 
changes.  

In cases where you choose to use a mitigation strategy 
and later find, for example, that it cannot be verified, is 
too complex, or has too high an overhead, you may need 
to explore using other mitigation strategies instead. 

The cost of making changes to mitigations that involve 
configuration changes may be higher than other 
methods, as they may require you to repeat any platform 
characterization activities you have done previously (see 
Platform Characterization on page 22).  

Whether you are applying hardware, software or hybrid 
strategies, the OS platform that you use can have a large 
impact on the ease of implementing and verifying a 
mitigation.  

While the hardware mitigations described in Hardware 
mitigation approaches on page 9 are all statically 
configured or initialized at boot time, A(M)C 20-193 
still requires that their status is monitored at runtime, 

for example by using safety monitoring software or a 
supervisor that prevents modification of the configuration 
at runtime.  

For mitigations that are implemented within the 
software, the complexity of multicore processors and 
SoCs with many different internal and external devices 
requires a powerful software layer to be able to mitigate 
interference using the approaches we discussed above. 
State-of-the-art RTOSes such as VxWorks and the 
Wind River hypervisor contained in Helix Platform can 
provide the necessary features, and with their versatile 
configuration options, the most appropriate approaches 
can be selected to address the project’s requirements 
for safety and performance.  

The use of a multi-tiered OS architecture with a 
hypervisor and independent guest RTOS kernels 
can bring significant benefits when it comes to 
implementing interference mitigation approaches. 
Multi-tiered architectures offer clearer separation and 
increased isolation of applications in a multicore system, 
which makes it easier to demonstrate compliance to  
A(M)C 20-193 objectives, whereas monolithic multicore 
OS kernels tend to carry complex internal data 
and control couplings to implement device drivers,  
inter-process communication and stacks for networking 
or file systems. Implementing applications for a single-
core RTOS or runtime environment, and then using 
distinct communication features across different 
applications and cores can greatly simplify A(M)C 20-193 
verification.  The abstraction between using a particular 
hardware resource and its functional usage through 
architectural standards like such as POSIX®, AUTOSAR 
or ARINC 653 is implemented in different layers of 
frameworks, RTOS, hypervisor and device drivers. It is 
usually opaque how a specific API call on the application 
level will exercise interference channels within all of 
these layers, but this must be taken into account during 
A(M)C 20-193 verification. 

Figure 15 – Multi-tiered OS architecture versus monolithic architecture with single multicore OS.
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Common examples include:

•	 The OS platform layers make use of the MMU and 
IOMMU to introduce usage of cache and memory 
controllers that is different to the application 
software view of memory. This happens when the 
RTOS maps application memory to different physical 
memory areas, and the hypervisor even adds a 
second level of indirection, so that interference on 
the memory and caches cannot be managed from 
the application level. 

•	 Usage of filesystem or network communication 
stacks can exercise interference channels in a  
non-obvious way. While this is directly traceable to 
file I/O or socket API calls in the application code, the 
mechanics of how the OS and runtime layers maintain 
the global state of the filesystem or network stack 
across different cores requires detailed analysis with 
regard to multicore interference. 

•	 Other application APIs are also likely to exercise 
interference channels, for example when a 
semaphore released by a task on one core causes 
cross-core signaling and rescheduling of pending 
tasks on different cores, or when pipes and message 
queues pass data between cores using shared 
memory. In this case, the hardware interference 
channel is amplified by the functional interference 
due to the runtime internals and control coupling 
across cores. 

While software is highly configurable, it is critical to 
analyze how different configuration settings affect 
multicore interference, as well as the overall performance 
characteristics of the system. In particular, the use 
of software and hybrid mitigations requires intimate 
knowledge about the software design and how it utilizes 
the underlying hardware.  

This challenge can be overcome with pre-verified 
toolboxes that already implement various mitigation 
strategies, which is exactly what commercial OS 
platforms such as VxWorks and Helix Platform provide. 
The Wind River approach is to offer commercial  
off-the-shelf DO-178C certification evidence data 
packages for the OS platform that cover an entire 
processor family — such as Armv8-A or Intel® x86 64-bit  
— and come with formal guidance on how to integrate with 
specific hardware and application software. The design 
and integration documentation gives the information 
needed to open the black box and perform a full analysis 
of how the application’s use of API and external interfaces 
will exercise the interference channels.  

This out-of-the-box approach solves an important issue 
in the design process, as most of the software-related 
mitigation strategies have a direct influence on the 
design of the application or the system such as splitting 
functionality into different time windows or limiting data 
exchange between tasks. 
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5. 

VERIFYING 
MITIGATIONS
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After implementing a mitigation, you will 
need to verify it to meet A(M)C 20-193’s  
MCP_Resource_Usage_3 objective. 

Your approach to verifying mitigations should have the 
following properties: 

•	 It should be reproducible and well defined, and 
included in your DO-178C/ED-12C planning 
documentation as per A(M)C 20-193’s planning 
objectives early in your project. This will support your 
DO-178C/ED-12C and A(M)C 20-193 compliance 
activities, and reduce rework costs. 

•	 It must include a mechanism for measuring the 
performance of the system, both when there is 
no interference and when there is interference 
present on the system. Your approach to measuring 
performance will need to be measurement-based 
as no computational approach, such as static 
or statistical analysis, can effectively model the 
performance behavior of multicore computing 
platforms. To reduce costs, this approach should also 
support analyzing software performance to meet  
A(M)C 20-193’s MCP_Software_1 and  
MCP_Software_2 objectives. 

A sensible approach to verifying the impact of mitigation 
to meet the MCP_Resource_Usage_3 objective is to 
analyze the impact of each interference channel through 
a measurement-based approach, see above, and 
determine whether mitigations applied to it are effective. 

Many mitigations can be verified at the platform level. That 
is, for such mitigations, access to application software 
is not required to verify the mitigation. All hardware 
mitigations and some software and hybrid mitigations 
fall into this category. These mitigations can be verified 
early in a DO-178C/ED-12C project, reducing the need 
for further verification later in a project. An approach for 
this verification is presented in Platform Characterization 
on the next page. 

Some mitigations, however, can only be verified when 
access to the application software is available. Software 
mitigations based on software architecture fall into this 
category. An approach for this verification is presented in 
Software Characterization on page 23.  

The software characterization process will need to include 
the RTOS and hypervisor layers as well, as compliance to 
A(MC) 20-193 needs to be demonstrated for all software. 
Using an off-the-shelf OS platform where the vendor 
already provides verification results can make software 
characterization easier, as described in Operating system 
platform verification on page 23.

If any of the mitigations you have applied disable 
a resource or feature, it will not be possible to 
characterize the corresponding interference channels.

In this case, you should instead register any 
configuration settings associated with the deactivation 
as critical configuration settings and ensure that the 
mitigations are implemented correctly and that they 
remain so during execution.

This provides evidence needed to meet the  
MCP_Resource_Usage_1 and 2 objectives.
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5.1 How to verify mitigations at the 
platform level (Platform Characterization)

Rapita Systems’ MACH178 solution provides an approach 
for generating interference on multicore platforms 
through a reproducible mechanism, and measuring 
the performance of a multicore system, both with and 
without interference present (Figure 16). 

•	 RapiDaemons are benchmark applications designed 
to target specific interference channels on multicore 
platforms. They support the measurement and 
generation of interference through a reproducible 
approach so that performance metrics to support 
A(M)C 20-193 compliance can be collected.   

•	 The Rapita Verification Suite (RVS) enables 
the creation and execution of performance tests 
on a multicore platform to provide evidence for  
A(M)C 20-193 compliance. RVS supports running 
baseline performance tests on multicore platforms, 
and together with RapiDaemons, enables the 
generation and execution of tests and collection of 
performance results when interference has been 
applied on the system. It also provides an automated 
export mechanism that allows compliance results 
to be generated and re-generated efficiently, and 
it supports the collection of performance counters 
from hardware event monitoring units (sometimes 
called performance monitoring units) on a multicore 
platform. These are used as an independent means 
to support the analysis and validate results, providing 
evidence that RapiDaemons have the expected 
behavior on the multicore system and that resource 
usage is understood. 

These technologies allow performance and mitigations 
to be verified through the following process (Figure 17). 
For each interference channel: 

1.	 First, RapiDaemons that can support the 
characterization are selected. This typically includes 
a victim RapiDaemon that is sensitive to interference 
on a specific interference channel, as well as one or 
more RapiDaemons that can generate interference 
on a specific interference channel (aggressive 
RapiDaemons).  

2.	 Then, with mitigations applied, the timing behavior 
of the victim RapiDaemon running on one core of 
the system is measured while all other cores are idle. 
RVS is used to support the generation and execution 
of tests and collection and the review of results 
from these tests. RapiTest supports the creation 
and automated execution of tests, while RapiTime 
supports the collection of performance metrics and 
analysis and export of results.  

3.	 Next, with mitigations still applied, a series of tests is 
conducted where a sensitive RapiDaemon is running 
on one core as in step 2, and where interference is 
applied on one or more of the other cores using 
aggressive RapiDaemons. RVS is again used to 
support this activity. 

4.	 Results are analyzed using RapiTime to determine 
whether the interference channel has been mitigated 
(there is no observable impact on performance of 
the sensitive RapiDaemon between steps 2 and 3) 
or not. Results are also exported using RapiTime.  

5.	 If you want to understand the impact of applying the 
mitigation, steps 2 and 3 can be repeated without 
mitigations applied. In some cases, a channel may 
have negligible impact on performance even without 
mitigation. If you are analyzing the performance 
impact of an interference channel that has not been 
mitigated, this is the standard procedure. 

Platform Characterization allows you to determine 
whether your mitigation strategies are effective 
at mitigating interference channels. Later in your  
A(M)C 20-193 workflow, you will need to provide evidence 
that your software meets its requirements while 
interference is present (e.g. to meet MCP_Software_1 
and MCP_Software_2 objectives. 

Figure 16 – MACH178 includes an efficient tool automation workflow to ensure test efficiency, traceability and 
reproducibility 

Detailed procedures for the Platform Characterization 
process are available in MACH178 Foundations, 
which also includes template A(M)C 20-193 planning 
documents, templates and checklists, and white 
papers to support A(M)C 20-193 compliance.
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An advantage of demonstrating that an interference 
channel has been mitigated in the way described 
here is that it allows you to remove that interference 
channel from the scope of these future activities. No 
further verification should be required specific to the 
interference channel you have mitigated unless factors 
that could affect the mitigation, for example critical 
configuration settings in the multicore platform, change.

5.2 How to verify mitigations at the 
software level (Software Characterization)

Rapita Systems’ MACH178 approach includes a process 
for verifying mitigations at the software level, called 
Software Characterization. This process uses the same 
elements and a similar overall process to the Platform 
Characterization process with the following differences: 

•	 Performance is measured with the software (rather 
than a victim RapiDaemon) running on one core, 
with aggressive RapiDaemons running on the other 
cores as in Platform Characterization. 

•	 The mitigation will need to be reverified if the 
software changes.  

•	 The resource usage of the software must be 
understood to ensure that sufficient resources 
are available, therefore the capture of values from 
different/additional hardware event monitoring units 
may be required for this activity. 

For interference channels that have not been mitigated, 
the Software Characterization process can also be used 
to support MCP_Software_1 and MCP_Software_2 
verification activities. 

5.3 Operating system platform verification

The challenge of A(M)C 20-193 compliance includes 
formal verification and full compliance to the objectives 
of DO-178C/ED-12C and A(M)C 20-193 for all software 
layers, including RTOS and hypervisor. The Wind River  
DO-178C certification evidence data packages for 
VxWorks and Helix Platform come with compliance 
statements for the multicore certification objectives 
that are gathered on reference hardware, along with 
guidance on how to achieve full compliance when the 
integration with the final hardware and application 
software is completed. 

On top of this, the unique IBLL (independent build, link  
and load) feature in Helix Platform enables the DO-
297/ED-124 role-based model for incremental system 
integration and certification. This approach from 
Integrated Modular Avionics (IMA) makes it possible to 
design and verify a generic combination of hardware 
and OS platform with interference mitigations in place, 
but without application software. Applications from 
different origins are then integrated later and can even 
be replaced independently from each other during the 
lifetime of the device without having to repeat the full 
suite of verification activities. This effectively decouples 
the lifecycle of applications and the underlying platform 
and powers true reuse in safety-critical multicore 
systems. 

Detailed procedures for the Software Characterization 
process are available in MACH178 Foundations, 
which also includes template A(M)C 20-193 planning 
documents, templates and checklists, and white 
papers to support A(M)C 20-193 compliance. 

Figure 17 – MACH178 platform characterization workflow
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6. 

CONCLUSION

The use of multicore processing for 
DO-178C/ED-12C avionics is inevitable, 
but using multicore processing in  
DO-178C/ED-12C software requires 
adherence to A(M)C 20-193 guidelines. 
Meeting these guidelines requires that 
interference and interference channels on the 
multicore platform are understood, mitigated 
and verified, so efficient approaches to each 
of these activities is key to the success of any 
project aiming for A(M)C 20-193 certification.   

Identifying interference channels and verifying mitigation 
are both crucial steps in achieving A(M)C 20-193 
compliance. Rapita Systems’ MACH178 solution supports 
these activities by providing documentation, tools and 
services to identify interference channels on multicore 
platforms, generate interference in a reproducible 
and automated manner, and verify the performance 
of multicore software in interference scenarios. The 
solution includes template compliance documents, 
processes and checklists that directly cover most of  
A(M)C 20-193’s objectives.   

VxWorks and Helix Platform are the foundation for 
easy implementation of many interference mitigation 
strategies and they take full advantage of the features of 
modern Arm, Intel and PowerPC processors. Off-the-shelf 
DO-178C certification data packages for these solutions 
support the verification of multicore interference in 
line with A(M)C 20-193 objectives. Clear separation and 
isolation with multi-tiered OS platforms help handle 
the complexity of multicore interference within the 
architecture and can enable independent verification 
mitigations before application software integration.  

A(M)C 20-193 certification is an iterative process, and it 
is unreasonable to expect only a single run-through of 
some verification activities. Your choice to apply a specific 
mitigation or not, for example, may lead to an impact on 
your software performance that requires you to change 
this choice later and repeat some verification activities. 
Because of this, it is important to drive efficiency at every 
stage of the project, as supported by Wind River and 
Rapita Systems solutions.   

In cases where it isn’t feasible to mitigate all interference 
channels while delivering required performance, 
certification applicants should consider managing the 
impact of interference to improve software reliability 
and performance. We intend to address this in a future 
paper.
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Karl Thyssen graduated from the University of Heidelberg in Computer Science. After 
joining Rapita, he became a Multicore Analysis Engineer who works in the delivery of 
customer projects on multicore platforms, specializing in software analysis.

About Rapita Systems

Email: info@rapitasystems.com
 
LinkedIn: linkedin.com/company/rapita-systems

Find out more: Learn more about multicore software verification and how to meet DO-178C 
objectives with a wide range of our webinars and whitepapers. Visit our website for more info.   
https://www.rapitasystems.com/resources
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Wind River is accelerating digital transformation across industries by delivering the software 
and expertise that enable the development, deployment, operations, and servicing of mission-
critical intelligent systems from the edge to the cloud. Wind River technology is found in billions 
of products and is backed by world-class services and support and a broad partner ecosystem.

Olivier Charrier
Functional Safety Specialist

Olivier Charrier is a software engineer who obtained a Master’s degree in Software 
Engineering (DESS) from Bordeaux University in 1989. He worked for Alsys/Aonix 
before joining Wind River in June 2001 as Senior Field Application Engineer for the 
South-western region of Europe dedicated to the Aerospace & Defence Market. 
In 2007, he became EMEA Aerospace & Defence Principal Engineer to support 
and coordinate EMEA wide A&D programs. Since January 2017, Olivier has been 
extending his scope to contribute to other markets, like Railway, Nuclear, Medical and 
Automotive, also adding new geo like APAC.  

Stefan Harwarth
Specialist Systems Architect

Stefan Harwarth is part of the European Field Application Engineering team working 
with customers in the Aerospace & Defense market. His focus is on leveraging Wind 
River’s VxWorks RTOS and Helix Virtualization Platform in customer projects, including 
certification to safety standards such as DO-178C. Stefan graduated in Computer 
Science from the University of the Federal Armed Forces in Munich and spent several 
years working in Avionics software development before joining Wind River.

About Wind River

Email: inquiries@windriver.com
 
LinkedIn: linkedin.com/company/wind-river

Find out more: Browse through white papers, videos, infographics, and more to explore the latest trends 
and technology for mission-critical intelligent systems. https://www.windriver.com/resources
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